Osseointegration potential of mesenchymal stem cells on porous heat treated and untreated 3D-printed Ti6Al4V scaffolds

  • G Vicatos
  • E. van Heerden
Keywords: Osseointegration, MSCs differentiation, Porous titanium implants


Hypothesis: Aseptic loosening of artificial joints and long bones implants occurs due to the loss of implant
fixation. By developing an implant with a 3D porous structure at the bone-implant interface, the ingrowth of
bone will permit better and stronger interlocking of the implant to prevent loosening. This study hypothesizes
that the seeding of this three-dimensional (3D) scaffold structure, with mesenchymal stem cells (MSCs),
will further improve the potential for osseointegration of the implants, as the existing bone may be able to
unite with the developing bone.
Aim: The aim of this study is thus to investigate the effect that the thermal oxidization, or heat treatment process
on the laser sintered 3D Ti64 scaffolds will have on the potential for adhesion, proliferation and differentiation
of seeded mesenchymal stem cells in vitro.
Method: Titanium-6Aluminum-4Vandium, or Ti-6Al-4V (Ti64), is one of the most commonly used implant
materials. Testing at the University of Cape Town has shown that the heat-treatment of Ti64, at 600 °C for 20
hours, vastly improves the material’s mechanical properties and tribological results. Porous scaffolds were
manufactured and seeded with MSCs. All cell tests were done with rat and human MSCs on both untreated
and heat treated Ti64 scaffolds.
Results and Discussion: The results of MSCs adhesion, growth and differentiation tests on both untreated and
heat-treated titanium porous scaffolds, are presented and compared and show marginal difference in cell
Conclusions: It is possible to seed patient’s MSCs into porous titanium implants that are in contact with the
host bone, to improve osseointegration and secure interlocking of the implant.

Author Biographies

G Vicatos

Mechanical Engineering Dpt, University of Cape Town

E. van Heerden

Mechanical Engineering Dpt, University of Cape Town


1. Porter M., Borroff M., Gregg P., Howard P., MacGregor A., Tucker K. National Joint Registry for England and Wales; 9th Annual report 2012; 50.
2. Kurtz, S., Ong, K., Lau, E., Mowat, F., & Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. The Journal of bone and joint surgery. American volume 2007; 89(4), 780–5. doi:10.2106/JBJS.F.00222
3. Steinemann G. Titanium - the material of choice ? Periodontology 2000; 17, 7–21.
4. Dabrowski, B., Swieszkowski, W., Godlinski, D., & Kurzydlowski, K. Highly porous titanium scaffolds for for orthopaedic applications. Journal of biomedical materials research Part B: Applied biomaterials 2010; 95B, 53–61.
5. Schindler P. Surface complexation in: H. Sigel (Ed.), Metal ions in biological systems 1984 (23rd ed, pp. 105–135). New York: Dekker.
6. Allen C, Bloycet A, Bell T. Sliding wear behaviour of ion implanted ultra high molecular weight polyethylene against a surface modified titanium alloy Ti-6Al-4V. Tribology International 1996; 29(6), 527–534.
7. Díaz, C., Lutz, J., Mändl, S., García, J. a., Martínez, R., Rodríguez, R. J., … Conde, A. Comparison of tribological behaviour and biocompatibility of Ti6Al4V alloy after ion implantation or thermal oxidation. Physica Status Solidi (C) 2008; 5(4), 947–951. doi:10.1002/pssc.200778310
8. Guleryuz H, Cimenoglu H. Surface modification of a Ti–6Al–4V alloy by thermal oxidation. Surface and Coatings Technology 2005; 192(2-3), 164–170. doi:10.1016/j.surfcoat.2004.05.018
9. Waterhouse R. B, Iwabuchi A. High temperatures fretting wear of four titanium alloys. Wear 1985; 106, 303–313.
10. Mudd R, Basson J, Vicatos G, Hosking K. Surface treatment of Titanium Alloys for improved wear resistance. Proceedings of Microscopy Society of Southern Africa, Cape Town 2003.
11. Loew M. Short stem shoulder prosthesis: Concept and first results. Der Orthopäde 2013; 42(7), 501–506.
12. Wilkinson J, Gordon A, Stockley I. Experiences with the Plasmacup - early stability, wear, remodelling and outcome. International Orthopaedics 2003; 27 Suppl 1, S16–9.
13. Rothman R, Cohn J. Cemented versus cementless total hip arthroplasty. A clinical review. Clinical orthopaedics and related research 1990; 254, 153–169.
14. Waddell J. Hip arthritis surgery (1st ed.). Philadelphia, USA: Saunders 2008; Elsevier Inc.
15. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4), 677–89. doi:10.1016/j.cell.2006.06.044
16. Le Guehennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials Journal 2007; 23, 844–854.
17. Le Guehennec, L., Lopez-Heredia, M.A., Enkel, B., Weiss, P., Amouriq, Y., & Layrolle, P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta biomaterialia 2008; 4(3), 535–43. doi:10.1016/j.actbio.2007.12.002
18. Anselme, K., Linez, P., Bigerelle, M., Le Maguer, D., Le Maguer, A., Hardouin, P., Leroy, J. M. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials 2000; 21(15), 1567–77. http://www.ncbi.nlm.nih.gov/pubmed/10885729; Accessed 2017
19. Hermawan H, Ramdan D, Djuansjah JRP. Metals for Biomedical Applications. In R. Fazel (Ed.), Biomedical Engineering - From Theory to Applications 2009; pp. 411–430). InTech. www.intechopen.com/download/get/type/pdfs/id/18658; Accessed 2017
20. Yang, Y., Tian, J., Deng, L., & Ong, J. L. Morphological behavior of osteoblast-like cells on surface-modified titanium in vitro. Biomaterials 2002; 23, 1383–1389.
21. Lavenus, S., Berreur, M., Trichet, V., Pilet, P., Louarn, G., & Layrolle, P. Adhesion and osteogenic differentiation of human mesenchymal. European Cells and Materials 2011; 22, 84–96.
22. Perrotti, V., Palmieri, A., Pellati, A., Degidi, M., Ricci, L., Piattelli, A., & Carinci, F. Effect of titanium surface topographies on human bone marrow stem cells differentiation in vitro. Odontology 2013; 101(2), 133–139. doi:10.1007/s10266-012-0067-0
23. Pohler OEM. Unalloyed titanium for implants in bone surgery. Injury 2000; 31(4), 7–13.
24. Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clinical orthopaedics and related research 1992; 274, 124–134.
25. Peltola, S. M., Grijpma, D. W., Melchels, F. P. W., & Kelomaki, M. A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine 2008; 40(4), 268–280.
26. Maeda, M., Hirose, M., Ohgushi, H., & Kirita, T. In vitro Mineralization by Mesenchymal Stem Cells Cultured on Titanium Scaffolds. The Journal of Biochemistry 2007; 736, 729–736. doi:10.1093/jb/mvm077
27. ATCC. Adipose-Derived Mesenchymal Stem Cells; Normal, Human (ATCC® PCS-500-011™). https://www.atcc.org/products/all/PCS-500-011.aspx; Accessed 2017
28. ATCC ® Stem Cell Culture Guide tips and techniques for culturing stem cells 2012. https://www.atcc.org/~/media/PDFs/Culture%20Guides/iPSCguide.pdf; Accessed 2017
29. Meinel, L., Karageorgiou, V., Fajardo, R., Snyder, B., Shinde-Patil, V., Zichner, L., Vunjak-Novakovic, G. Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Annals of biomedical engineering 2004; 32(1), 112–22. http://www.ncbi.nlm.nih.gov/pubmed/14964727; Accessed 2017
30. Kamath A. Human Mesenchymal Stem Cells and Multipotent Cord Blood Unrestricted Somatic Stem Cell Protocol : Thawing and Plating. 2009 ® Thermo Fisher Scientific Inc. Adapted from Kamath, A, Cellular Engineering Technologies, Inc. http://manualzz.com/doc/12855165/human-mesenchymal-stem-cells-and-multipotent-cord-blood-u; Accessed 2017
31. García-Alonso, M. C., Saldaña, L., Vallés, G., González-Carrasco, J. L., González-Cabrero, J., Martínez, M. E., Munuera, L. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials 2003; 24(1), 19–26. http://www.ncbi.nlm.nih.gov/pubmed/12417174; Accessed 2017
32. Saldaña, L., Vilaboa, N., Vallés, G., González-Cabrero, J., & Munuera, L. Osteoblast response to thermally oxidized Ti6Al4V alloy. Journal of biomedical materials research 2005; Part A, 73(1), 97–107. doi:10.1002/jbm.a.30264
33. Nishiguchi, S, Kato, H., Fujita, H., Oka, M., Kim, H. M., Kokubo, T., & Nakamura, T. Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials 2001; 22(18), 2525–2533. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11516085; Accessed 2017
34. Nishiguchi, Shigeru, Fujibayashi, S., Kim, H.-M., Kokubo, T., & Nakamura, T. Biology of alkali- and heat-treated titanium implants. Journal of biomedical materials research 2003; Part A, 67(1), 26–35. doi:10.1002/jbm.a.10540
35. Gwynn I. Cell biology at interfaces. Journal of Materials Science: Materials in Medicine 1994; 5(6-7), 357–360.
36. Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells 2006; 24(5), 1294–301. doi:10.1634/stemcells.2005-0342
37. Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis and rheumatism 2005; 52(8), 2521–9. doi:10.1002/art.21212
38. Stenderup, K., Justesen, J., Clausen, C., & Kassem, M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003; 33, 919–926. doi:10.1016/j.bone.2003.07.00