Application of Nanotechnology in Medicine. Smart Biomaterials and Biosensors

Authors

  • Ioannis K. Triantafyllopoulos
  • Nikolaos A. Papaioannou

Keywords:

Nanobiomedicine, smart biomaterials, nanomaterials, nanobiosensors.

Abstract

Nanomaterials have found a wide field of application in medicine in terms of diagnosis, tracing, and treatment. This nanomedical technology involves drug delivery couriers, in vivo medical imaging, in vitro diagnostics, therapeutic techniques, biomaterials and tissue engineering products. In nanobiomedicine, tissue engineered scaffolds establish a tissue specific nanoenvironment to maintain and regulate cell behavior and function. Nanoscaffolds play a vital role in storing, releasing and activating a wide range of biological factors, along with aiding cell-to-cell communication and cell-soluble factor interaction. Certain fabrication methods such as self-assembly, phase separation, and electrospinning technology form 2D and 3D nanopatterns that play different roles in cell manipulation and functional tissue formation. Localized and controlled delivery of biological factors, response to certain stimuli, degradation rate of the nanomaterials and reproduction of the forming tissues, are issues with emerging research.

Recently, nanotechnology has revolutionized the development of biosensors. The transduction mechanisms have been significantly improved with the use of nanomaterials and nanostructures. Hybrid nanostructures, quantum dots, nanoparticles for enzyme immobilization, are widely used for the merging of chemical and biological sensors. The application of these nanomaterials for sensing several key pathways and regulatory events made the overall process fast, easy to execute, and better in terms of performance providing a friendly and result-oriented experimental support.  Nanobiosensors are highly versatile and multifunctional so they can find application in broad biomedical and environmental fields.

Downloads

Download data is not yet available.

Author Biographies

Ioannis K. Triantafyllopoulos

Laboratory for the Research of Musculoskeletal Disorders, Medical School, National & Kapodistrian University of Athens, Greece

5th Orthopedic Dpt. HYGEIA Hospital, Athens, Greece

Nikolaos A. Papaioannou

Laboratory for the Research of Musculoskeletal Disorders, Medical School, National & Kapodistrian University of Athens, Greece

References

1. Myung S., Solanki A., Kim C., Park J., Kim K.S., Lee K.B. Graphene-encapsulated Nanoparticle-based Biosensor for the Selective Detection of Cancer Biomarkers. Advanced Materials. 23, 2221–2225, 2011.
2. Reyes P. I., Ku C.-J., Duan Z., Lu Y., Solanki A, Lee K.B. ZnO Thin Film Transistor Immunosensor with High Sensitivity and Selectivity. Applied Physics Letters. 98, 17370-2, 2011.
3. Myung S., Kim C., Yin P.T., Park J.S., Solanki A., Reyes P.I., Yicheng L., Kim K.S., Lee K.B. Label-free Polypeptide-based Enzyme Detection Using a Graphene-nanoparticle Hybrid Sensor. Advanced Materials. 24(45):6081-7, 2012.
4. Stevens M.M., George J.H. Exploring and engineering the cell surface interface. Science. 18;310(5751):1135-8, 2005.
5. Taipale J., Keski-Oja J. Growth factors in the extracellular matrix. FASEB J. 11(1):51-9, 1997.
6. Goldberg M., Langer R., Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 18(3):241-68, 2007.
7. Chen Z., Bachhuka A., Wei F., Wang X., Liu G., Vasilev K., Xiao Y. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. Nanoscale. 30;9(46):18129-18152, 2017.
8. Norman J.J., Desai T.A. Methods for fabrication of nanoscale topography for tissue engineering scaffolds Ann Biomed Eng. 34(1):89-101, Epub 2006.
9. Bettinger C.J., Zhang Z., Gerecht S., Borenstein J.T., Langer R. Enhancement of In Vitro Capillary Tube Formation by Substrate Nanotopography. Adv Mater. 20(1):99-103, 2008.
10. Gerecht S., Townsend S.A., Pressler H., Zhu H., Nijst C.L., Bruggeman J.P., Nichol J.W., Langer R. A porous photocurable elastomer for cell encapsulation and culture. Biomaterials. 28(32):4826-35, Epub 2007.
11. Kim D.H., Lipke E.A., Kim P., Cheong R., Thompson S., Delannoy M., Suh K.Y., Tung L., Levchenko A. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci U S A. 12;107(2):565-70, 2010.
12. Oh S., Brammer K.S., Li Y.S., Teng D., Engler A.J., Chien S., Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A. 17;106(7):2130-5, 2009
13. Madurantakam P.A., Cost C.P., Simpson D.G., Bowlin G.L. Science of nanofibrous scaffold fabrication: strategies for next generation tissue-engineering scaffolds. Nanomedicine (Lond). 4(2):193-206. 2009.
14. Hosseinkhani H., Hosseinkhani M., Khademhosseini A., Kobayashi H. Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J. Control. Release. 117; 380-386, 2016.
15. LaFratta C.N., Fourkas J.T., Baldacchini T., Farrer R.A. Multiphoton fabrication. Angew Chem Int Ed Engl. 46(33):6238-58, 2007.
16. Farokhzad O.C., Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 27;3(1):16-20, 2009.
17. Khan F., Tanaka M. Designing Smart Biomaterials for Tissue Engineering. Int. J. Mol. Sci. 19(1):17, 2018.
18. Ma P.X. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 14;60(2):184-98, 2008.
19. Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting organ-level lung functions on a chip. Science. 25;328(5986):1662-8, 2010.
20. Kumar R., Griffin M., Butler P.E. A Review of Current Regenerative Medicine Strategies that Utilize Nanotechnology to Treat Cartilage Damage. The Open Orthopaedics Journal. 10 (Suppl 3, M6): 862-867, 2016.
21. Lim E-H., Sardinha J.P., Myers S. Nanotechnology Biomimetic Cartilage Regenerative Scaffolds. Arch Plast Surg. 41(3): 231–240, 2014.
22. Malik P., Katyal V. Nanobiosensors: Concepts and Variations. ISRN Nanomaterials. DOI: 10.1155/2013/327435, 2013
23. Jianrong C., Yuqing M., Nongyue H., Xiaohua W., Sijiao L. Nanotechnology and biosensors, Biotechnology Advances. 22(7):505–518, 2004.
24. Huang Y., Zhang W.,Xiao H.,Li G. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosensors and Bioelectronics. 21(5):817–821, 2005.
25. Pickup J.C., Hussain F., Evans N.D., Sachedina N. In vivo glucose monitoring: the clinical reality and the promise. Biosensors and Bioelectronics, 20(10):1897–1902, 2005.
26. Bolinder J., Ungerstedt U, Arner P. Microdialysis measurement of the absolute glucose concentration in subcutaneous adipose tissue allowing glucose monitoring in diabetic patients. Diabetologia. 35(12):1177–1180, 1992.
27. Drummond T.G., Hill M.G., Barton J.K. Electrochemical DNA sensors, Nature Biotechnology. 21:1192–1199, 2003.
28. Fagerstam L.G, Frostell A., Karlsson R, et al. Detection of antigen-antibody interactions by surface plasmon resonance. Application to epitope mapping. Journal of Molecular Recognition. 3(5-6):208–214, 1990.
29. Alterman M., Sjobom H., Safsten P., et al., P1/P1 modified HIV protease inhibitors as tools in two new sensitive surface plasmon resonance biosensor screening assays. European Journal of Pharmaceutical Sciences. 13(2):203–212, 2001.
30. Gao X.,Cui Y., Levenson R.M., Chung L.W.K.,Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology. 22(8):969–976, 2004.
31. Harisinghani M.G., Barentsz J., Hahn P.F., et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer, The New England Journal of Medicine. 348(25):2491–2499, 2003.
32. Grimm J., Perez J.M., Josephson L., Weissleder R. Novel nanosensors for rapid analysis of telomerase activity. Cancer Research. 64(2):639–643, 2004.
33. Haun J.B., Yoon T-J., Lee H., Weissleder R. Magnetic nanoparticle biosensors. Wiley Interdisciplinary Reviews. 2(3):291–304, 2010.
34. Kim E.J., Lee Y., Lee J.E., Gu M.B. Application of recombinant fluorescent mammalian cells as a toxicity biosensor. WaterScience and Technology. 46(3):51–56, 2002.
35. Purohit H.J Biosensors as molecular tools for use in bioremediation. Journal of Cleaner Production. 11(3):293–301, 2003.
36. Larsen L.H., Kjær T., Revsbech N.P. A microscale NO3-biosensor for environmental applications. Analytical Chemistry. 69(17):3527–3531, 1997.
37. Kulys J., Higgins I.J., Bannister J.V. Amperometric determination of phosphate ions by biosensor. Biosensors and Bioelectronics. 7(3):187–191, 1992.
38. Wollenberger U., Schubert F., Scheller F.W. Biosensor for sensitive phosphate detection. Sensors and Actuators B. 7(1–3):412–415, 1992.

Downloads

Published

2022-09-28