Current Concepts in Pathogenesis and Biomechanics of Adolescent Idiopathic Scoliosis

  • Marios G. Lykissas Department of Orthopaedic Surgery, Metropolitan Hospital, Athens, Greece
  • George D. Stachtos Department of Anesthesiology, Metropolitan Hospital, Athens, Greece
Keywords: biomechanics, adolescent idiopathic scoliosis, classification, rotational imbalance


Considerable progress has been made in the past two decades in understanding the pathogenesis and biomechanics of adolescent idiopathic scoliosis (AIS). Biplanar asymmetry has long been considered as the essential of idiopathic scoliosis. Median plane asymmetry is crucial for progression of idiopathic scoliosis.The presence of thoracic lordosis or hypokyphosis has been emphasized in the development of AIS. The changes in the cartilaginous endplate and the intervertebral disc are key factors in the progression of scoliosis and the way the curve responds to different therapeutic regimens. This article aims to analyze the current concepts in pathogenesis and biomechanics of AIS as well as to describe conservative and surgical treatment biomechanics. Biomechanical differences between AIS and degenerative scoliosis are also analyzed.


Download data is not yet available.


1. Cobb J. Outline for the study of scoliosis. Instructional Course Lectures, American Academy of Orthopaedic Surgeons. 1948;5:261–75.
2. Sud A, Tsirikos A. Current concepts and controversies on adolescent idiopathic scoliosis: Part I. Indian J Orthop 2013;47:117-28.
3. James J. Idiopathic scoliosis; the prognosis, diagnosis, and operative indications related to curve patterns and the age at onset. J Bone Joint Surg Br 1954;36B:36-49.
4. Wang W, Yeung HW, Chu WC-W, et al. Top theories for the etiopathogenesis of adolescent idiopathic scoliosis. J Pediatr Orthop 2011;31(1 Suppl):14-27.
5. Lenke L, Betz RR, Harms J, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 2001;83A:1169-81.
6. Dickson R, Lawton JO, Archer R, et al. The pathogenesis of idiopathic scoliosis. Biplanar spinal asymmetry. J Bone Joint Surg Br 1984:66B:8-15.
7. Hefti F. Pathogenesis and biomechanics of adolescent idiopathic scoliosis (AIS). J Child Orthop 2013;7(1):17-24.
8. Guo X, Chau WW, Chan YL, et al. Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. J Bone Joint Surg Br 2003;85B:1026-31.
9. Janssen MMA, Kouwenhoven JW, Schlo¨sser TPC, et al. Analysis of the preexistent vertebral rotation in the normal infantile, juvenile and adolescent spine. Spine 2011;36:E486–91.
10. Kouwenhoven JW, Vincken KL, Bartels LW, et al. Analysis of preexistent vertebral rotation in the normal spine. Spine 2006;31(13):1467–72.
11. Castelein R, Dieën JV, Smit T. The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis-a hypothesis. Med Hypotheses 2005;65(3):501-8.
12. StokesI, Aronsson D. Disc and vertebral wedging in patients with progressive scoliosis. J Spinal Disord2001;14(4):317-22.
13. Burwell R.Aetiology of idiopathic scoliosis: current concepts. Pediatr Rehabil 2003;6:137-70.
14. Roberts S, Caterson B, Urban JBG. Structure and composition of the cartilage end plate and intervertebral disc in scoliosis. Spine: State of the Art Reviews 2000;14:3371-81.
15. Aulisa L, Vinciguerra A, Tamburrelli F, et al. Biomechanical analysis of the elastic behaviour of the spine with aging. In: Sevastik JA, Diab KM (Eds). Research into Spinal Deformities 1, IOS Press, Amsterdam 1997, pp 229-31.
16. Grivas TB, Vasiliadis E, Malakasis M, et al. Intervertebral disc biomechanics in the pathogenesis of idiopathic scoliosis. Stud Health Technol Inform 2006;123:80-3.
17. Liljenqvist UR, Alkemper T, Hackenberg L, et al. Analysis of vertebral morphology in idiopathic scoliosis with the use of magnetic resonance imaging and multiplanar reconstruction. J Bone Joint SurgAm 2002;84A:359-68.
18. Aulisa L, Lupparelli S, Pola E, et al. Biomechanics of the conservative treatment in idiopathic scoliotic curves in surgical “grey-area”. Stud Health Technol Inform, 2002;91:412-8.
19. Hitchon PW, Brenton MD, Black AG, et al. In vitro biomechanical comparison of pedicle screws, sublaminar hooks, and sublaminar cables. J Neurosurg 2003;99(1 Suppl):104-9.
20. Kim YJ, Lenke LG, Cho SK, et al. Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2004;29(18):2040-8.
21. Asghar J, Samdani AF, Pahys JM, et al. Computed tomography evaluation of rotation correction in adolescent idiopathic scoliosis: a comparison of an all pedicle screw construct versus a hook-rod system. Spine (Phila Pa 1976) 2009;34(8):804-7.
22. Wang X, Aubin CE, Robitaille I, et al. Biomechanical comparison of alternative densities of pedicle screws for the treatment of adolescent idiopathic scoliosis. European Spine J 2012;21:1082-90.
23. Cho W, Cho S, Wu C. The biomechanics of pedicle screw-based instrumentation. J Bone Joint Surg Br 2010;92(8):1061-5.
24. Crawford AH, Lykissas MG, Gao X, et al. All-pedicle screw versus hybrid instrumentation in adolescent idiopathic scoliosis surgery: a comparative radiographical study with a minimum 2-Year follow-up. Spine (Phila Pa 1976) 2013;38(14):1199-1208.
25. Kim YJ, Lenke LG, Kim J, et al. Comparative analysis of pedicle screw versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine 2006; 31:291-8.
26. Dvorák J, Vajda EG, Grob D, et al. Normal motion of the lumbar spine as related to age and gender. Eur Spine J 1995;4(1):18-23.
27. Kazarian L. Creep characteristics of the human spinal column. Orthop Clin North Am 1975;6(1):3-18.