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The impact of walking on spinal cord 
tissue regeneration in patients with 
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The impact of walking in Spinal Cord Injury can promote axonal growth through directed neuroplasticity. The 
impact of walking in corticospinal tracts, in combination with proprioception, could be the key to neuroregenera-
tion. Furthermore, growth factors such as brain-derived neurotrophic factor (BDNF) and insulin growth factor -1 
(IGF-1) play a crucial role not only in the procedure of axonal growth but also in the remyelination.
Many posttraumatic treatment strategies have been evaluated until now, including pharmacological agents aim-
ingto block the development of secondary apoptotic mechanisms of CNS. The same strategies are simultaneously 
able to promote the regeneration of neuroaxons. Nevertheless, there is insufficient knowledge concerning the 
hypothesis that gait training could be applied as a potential therapy for neuroprotection following SCI.
The objective of this review is to assess the impact of assisted walking in paraplegia by consolidating evidence 
regarding: (a) neuroplasticity (b) tissue regeneration.
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Introduction
According to the International Spinal Cord Society IS-
CoS, Spinal cord injury (SCI) is a severe neural trauma 
that, depending on the severity of the damaged segment, 
is classified into complete and incomplete. Statistically, 
it is assessed that 0.0022% of the global population will 
suffer from a spinal cord injury (SCI), annually [1]. Most 
of the patients with complete SCI are considered as clin-
ically incomplete due to a few remaining neuron con-
nections based on EMG results [2,3].

Paraplegia refers to the impairment and loss of mo-
tor, sensory and/or autonomic function in the thorac-
ic, lumbar or sacral segments [4]. It is a result of severe 
damage to the spinal cord and the nervous system 
[5,6]. Recovery following SCI is proved to be perplexed 
and requires long-term rehabilitation [4]. A hallmark 
of posttraumatic SCI is neuroplasticity, enabling nerv-
ous system to modify and change neural networks to 
adapt both neuronal structure and function [7-10]. 

The process of tissue regeneration following SCI 
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Figure 1: Flowchart of the Article Selection and Review Process 
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could be differentiated into two phases, the subacute 
and the chronic phase [5]. The subacute phase refers 
to some weeks following injury and the chronic to 
some months-years post-trauma [9]. Walking has been 
always a goal of the chronic-phase SCI rehabilitation 
program, concerning locomotion function [11-13]. 
Nonetheless, there are questions on how walking can 
affect neuroplasticity and tissue regeneration. This is 
a potential oversight to assume walking as a therapy.

The main purpose of this review is to provide proof 
that locomotion training on the treadmill [61], gait-as-
sisted orthosis such as Locomat and wearable exo-
skeleton robots are capable to foster spinal cord tissue 
regeneration and promote neuroplasticity through 
re-learning gait, in individuals with SCI [10]. Although 
the existing data about this issue is limited and quite 
perplexing, especially in human subjects, there are 
some research articles, meta-analysis and systematic 
reviews that could prove this hypothesis. Successful 
and functional nerve tissue regeneration should be 
supported from supraspinal tracts [62], spinal and pe-
ripheral inputs to be long- lasting and functional [63].

Pubmed database was reviewed to identify ways 
that walking can foster spinal cord tissue regeneration 
and promote neuroplasticity. The key words “SCI”, 
“neuroplasticity”, “regeneration”, “paraplegia”, “pro-
prioception” and “gait training” were used. Search 
parameters were specific regarding date of publication 
(from 1995 until 2022) and relevance. The process of 
identification and the criteria of inclusion-exclusion 
are described on the following flowchart (Figure 1).

Discussion
The initial electronic database search resulted in a total 
of 111 articles, of these, 77 were considered for inclu-
sion in this review (Figure 1).

Pathophysiology of Spinal Cord Injury
SCI consist of two major pathophysiological mecha-
nisms, primary and secondary [5,6,14]. The primary 
refers to the immediate mechanical traumatic damage 
of spinal cord, leading to demyelination and axotomy 
[15-17]. Secondary injury involves the presence of free 
radicals due to the long ischemia and hypoxia [4-6]. 
Neurotransmission is impaired, lipid peroxidation and 
calcium influx contribute to apoptosis and axonal de-

myelination [4,14-17]. Finally, scar and cavitation are 
formed, inhibiting myelin regeneration and limiting 
axon growth [4,5].

Neuroplasticity of Spinal Cord
Based on the metaplasticity theory, morphology and 
function of a synapse can change over time [9,18]. Fol-
lowing SCI, the following plasticity includes the neural 
circuit reconstruction, activation of neurons and nerve 
conduction [8,19]. The regulation of microenvironment 
and molecularis aim at neuroprotection of intact axons 
and gene regulation [20,21]. Specifically, neurotrophic 
factors such as the brain derived nerve factor–BDNF 
and insulin growth factor-1 (IGF-1) have been proved 
to promote adaptive spinal plasticity [20,21,28]. As an 
adaptive spinal plasticity can be referred as task-de-
pendent plasticity which can be succeed by special 
forms of training such as stepping [11,19,22].

In patients with paraplegia, stepping may be an ef-
fective approach to direct and enhance plasticity how-
ever the major question is how [25]. Assisted walking 
can be defined as a direct-task plasticity specific train-
ing of motor function [25]. Hence, the improvement of 
functional ability of individuals with paraplegia can 
be translated into enhancement in neuroplasticity. The 
parameters of these indications are gait speed, inten-
sity, and duration of gait training [25,27]. Literature 
data support that the improvement of intensity and 
gait speed are proved to be an indicator of increased 
plasticity [27].

Research conducted by Leech et al investigated that 
high-intensive treadmill training in patients with in-
complete chronic SCI has an important influence on 
serum concentration of the brain-derived neurotrophic 
factor BDNF [28]. The authors demonstrated increased 
levels of peripheral sBDNF after acute intensive gait 
training of 11 individuals with SCI [28]. Except from 
sBDNF, the researchers proved that treadmill training 
can also affect IGF-1 serum concentration levels [28]. 
Although there was no correlation between speed and 
intensity and serum levels of IGF-1, treadmill training 
increased the levels of IGF-1 following exercise in gen-
eral [28]. Taking into consideration that insulin-growth 
factor-1 (IGF-1) is involved in synaptic protein synthe-
sis and interacts with BDNF [20,21], this means that 
neuroregeneration can be promoted also on a molec-
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ular level. Neurotrophic factor BDNF promotes adap-
tive plasticity which is required for the creation of 
functional neural connections in SCI [28]. 

From Tissue Regeneration to Functional Synapsis
The scientific issue of neurogenesis and neuroregener-
ation in neuroscience has not been completely solved 
[23,24]. Nowadays, there is limited research data on 
neural repair following SCI and the mechanisms un-
derneath axon restoration and reconstruction [23]. 
Nevertheless, the function and efficiency of tissue re-
generation mechanisms is still under investigation 
[5]. Anatomically, there are three broad routes to suc-
cessfully achieving restitution of functional circuitry 
[6,18]. The one is the regeneration of damaged axons 
in long distance, the other is sprouting of lesioned 
neuron and get connected with the intact ones or al-
ternatively sprouting of undamaged axons and prop-
erly joined with the cut neuron [6,18]. The three broad 
routes alone are inadequate for functional synapsis 
[18]. Hence, there are some presuppositions that con-
tribute to functional restitution [6,76]. The damaged 
axons must appropriately guide to the right direction, 
maintain a long-distance axon growth, circumvent the 
glial scars, develop mechanisms of remyelination and 
finally form functional synapses with the intact neu-
rons [18,77].

The remyelination of axons after SCI is an overly 
complex process [15]. Nevertheless, it is generally ac-
cepted that the trophic factor BDNF, Schwann cells 
and oligodendrocyte precursor cells are involved in 
remyelinating spared axons, thereby contributing 
to tissue regeneration [15,16,26]. The growth factor 
BDNF has been proved to promote adaptive spinal 
plasticity, thus it can be assumed that there is an in-
teraction between the process of neuroplasticity of 
spinal neurons and myelin production [28,29].Fur-
thermore, Schwann cells are well known as the my-
elinating cells of peripheral nervous system [29,30]. 
However, they can gain access to spinal axons and 
assist in forming myelin [30]. This means that periph-
eral nervous system can influence in a positive way 
the damaged spinal circuits as far as myelin regener-
ation is concerned [15]. Eventually, oligodendrocyte 
precursor cells (OPCs) which originate both from the 
subventricular zone (SVZ) and locally, migrate to the 

SCI lesion site to differentiate into myelin-producing 
oligodendrocytes [15,31,32].

Axon outgrowth can be sustained only if axonal de-
bris of the damaged neurons can be surpassed. Micro-
glia is the major innate immune cell class in the brain 
and spinal cord [33]. Using its phagocytosis function, 
microglia could participate in the maintenance of 
structural and functional homeostasis of the central 
nervous system, such as normal myelin turnover and 
activity-dependent synaptic plasticity [33]. This phago-
cytosis is significantly up-regulated after injury, as a 
part of the injury-associated inflammatory responses, 
to engulf damaged neuronal and axonal debris [33].

Proprioceptive Afferent Promote Neuroplasticity 
Proprioceptive feedback incorporated signals from an-
kle extensors during stance and swing phases of walk-
ing [19,34,35]. To begin with, the leg extensor muscles 
provide load-related afferent information to the spinal 
cord [36,37]. The activation of these muscles is pro-
duced through loading of the sole of the foot during 
stance phase [37,38]. These activations occur a hip-joint 
related afferent input, which are appropriate for the in-
itiation of the swing phase [38,39,40]. A study demon-
strated that without loading the sole of the foot during 
the stance phase, no meaningful leg muscle activation 
occurs in people with complete paraplegia during sup-
porting stepping [41].

Another principal factor that depends on afferent 
proprioception is the automatism of moving limbs 
[42]. Spinal automatism is provided during stepping, 
influencing the coordination of the limbs during lo-
comotion [19,36,42]. In SCI, there is need for training, 
imitating the automatism and coordination of normal 
stepping [19,42]. Thus, a basic requirement to induce a 
locomotion pattern in the thoracolumbar spinal cord 
can be an assisting training, providing sufficient pro-
prioceptive feedback [36].

Training effects in patients with SCI depend on 
some number of physiological prerequisites necessary 
to evoke a pattern of muscle activation like those indi-
viduals without SCI to promote adaptive neuroplasti-
city [19,43,44]. A fundamental factor that is required 
to trigger a locomotor EMG pattern in SCI patients is 
an afferent input from load receptors [39,45]. Proprio-
ceptive inflow from leg extensor muscles and mechan-
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oreceptors in the sole of the foot, provide load-related 
afferent information [19,41]. Hip joint-related afferent 
inputs also play a major role in the generation of a lo-
comotor EMG pattern, in individuals with incomplete 
spinal cord injury [19,41].

The activation of load receptors and hip-joint related 
proprioceptive receptors (hip extension) lead to a phys-
iological leg muscle activity pattern during stepping 
[38]. The research proved that proprioceptive input 
produced during assisted walking led to targeted leg 
muscle activation. Electromyographic activity (EMG) 
of patients with SCI showed great improvement and 
similarities to normal walking [34,40,46].

Locomotion Rehabilitation Influence Plasticity and Regen-
eration 
It appears that, through gait training, the spinal cord 
acquires the ability to respond to the imposed pat-
terns of sensory inputs [47,48]. The aim is to retrain the 
nervous system, stimulating a form of learning that 
regenerates the surviving circuits and promotes new 
neuronal connections [22,48]. Stepping, as a spinal 
learning process, can strengthen the efficacy of neural 
pathways [47].

Neural excitability within the spinal cord is regu-
lated by motoneurons / interneurons [49]. Khan et al 
demonstrated that intensive walking training counter-
poise the abnormal H-reflex, clonus and stretch reflex 
following SCI [41,49-52]. Furthermore, the increased 
impact of corticospinal inputs to interneurons [53] 
due to training strengthened the inhibitory control of 
spinal circuits [49]. Additional research demonstrated 
that gait-assisted training generated and modulated 
soleus H-reflex [54,66]. Consequently, gait training 
strengthens spinal descending control and promotes 
adaptive plasticity [50,51,52].

 Cortical and spinal excitability must be increased 
to activate pyramidal axons and interneurons includ-
ing spinal intrinsic networks [65,67]. Thomas et al., 
examine the impact of intensive treadmill training on 
human spared corticospinal pathways directly [68] 
and not only based on walking function parameters 
[11,13]. The authors evaluated patients with chronic 
SCI and demonstrated that corticospinal tract func-
tion was enhanced after intensive daily treadmill 
training for several months [68]. The researchers 

used the system of TMS-evoked MEPs to measure 
corticospinal excitability, which was quite increased 
after training. Moreover, the patients were examined 
again after 2,5 years, and the results were maintained 
[68]. Therefore, the results of motor evoked potentials 
(MEP) might be an indication of nerve sprouting on 
spinal level [57,64].

Spared corticospinal tract (CST)[65] and propriocep-
tive afferent (PA) axons are both able to sprout after 
injury and contribute to rewiring spinal circuits, af-
fecting motor recovery [70]. Proprioceptive afferents 
and descending motor pathways, including the CST, 
are the two major classes of extrinsic inputs to spinal 
segmental motor circuits [70,71]. They closely interact 
with each other during postural control, locomotion, 
and voluntary movements [70-72]. Both ipsilateral CST 
and PA axons are very sparse in lamina V to VII of spi-
nal cord and there is minimal overlap between them 
[70-72]. Taking this fact for granted, it can be a parallel 
sprouting of proprioceptive afferents and CST axons 
[27].

Robot- assisted gait training in Paraplegia
Robot-assisted gait training (RAGT) is separated into 
two categories: the grounded exoskeleton robots (Lo-
comat) [22,34,55] and the wearable exoskeleton robots 
[76] such as ReWalk [56], Ekso, REX, Indego, and HAL 
[13,57]. FDA or CE officially approves all [22]. The 
major difference of these two robot systems is that 
Locomat is a stationary walking system including a 
grounded exoskeleton based on a treadmill, whereas 
the wearable exoskeleton utilizes various environ-
ments for gait training [22]. The main purpose of the 
two exoskeleton robots is to support SCI patients’ bod-
yweight to re-educate walking [58]. Studies proved 
that RAGT improve neuromuscular relearning in pa-
tients with SCI [55,59,60].

Important research with 11 incomplete patients with 
paraplegia provided supportive evidence for the clini-
cal potential of gait–assisted training with an exoskel-
eton. Particularly, all participants were trained with 
the assistance of BWSTT with HAL exoskeleton for 12 
weeks [57]. The authors reported that plastic chang-
es appeared in sensorimotor cortical region (S1) after 
training and long ago after it [57]. Nevertheless, more 
research is required in this field. 
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A case study with four patients with tetraplegia 
evaluated brain plasticity after training with body 
weight-supported treadmill (BWSTT) and Locomat 
orthosis [69]. Evidence of great significance was 
found by the investigators, who demonstrated su-
praspinal plasticity after 12-week training [69]. The 
assessment was made with fMRI imaging, proving an 
increased activation of sensorimotor cortical region 
(S1,S2) [12,69]. Furthermore, for the participants who 
achieved functional improvement in over-ground lo-
comotion, the fMRI depicted an enhanced activation 
of cerebellum [69]. Therefore, it can be assumed that 
these results may be a consequence of axonal regener-
ation on spinal level. Consequently, further research 
should be performed to investigate whether spinal 
tissue regeneration can be associated with previous 
results.

Limitations
One limitation of this study is that there was limited 
exclusive data available on paraplegic patients, since 
most of research papers also include quadriplegics 
due to the difficulty of finding subjects for research. 
Another restriction was the diversity of evaluating 
techniques used in the studies. For instance, some re-
searchers use fMRI depiction and others measure the 
concentration of molecules in serum levels.

Conclusion
This review is the first to refer to locomotion rehabil-
itation as a method to promote nerve tissue regenera-
tion. There are many presuppositions for a successful 
sprouting and nerve connection. The overall approach 
of supraspinal, spinal and peripheral tracts can be the 
key to directed plasticity. a
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