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ABSTRACT

Total joint replacement, although considered an excellent surgical procedure, can be complicated by osteolysis
induced by particles and subsequent aseptic loosening of the implant. The pathogenesis of implant-associated
osteolysis includes inflammatory and osteolytic processes. An appreciation of the complex network that
leads to these cellular and molecular responses will form a foundation on which to develop therapeutic
interventions to combat inflammatory periprosthetic bone loss. In this paper, the authors will try to arrange
the current basic knowledge of the bone - implant interface biology. The cascade of events that occur at the
cellular and molecular level during osseointegration, osteolysis and aseptic loosening will be also provided.
This knowledge would be very useful for researchers and orthopaedic surgeons, in order to intervene with
pharmacological agents either locally or systematically and optimize the osseointegration of implants. Such
biological and pharmacological interventions that have been currently tested will be finally reported.
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Introduction

In joint replacement surgery the pre-requisite for
clinical success is the achievement of good and fast
bone-implant osseointegration. Osseointegration
could be defined as the contact which intervenes,
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without interposition of non-bone tissue, between
normal remodeled bone and an implant which can
bear the distribution of load from the implant to
and inside the bone tissue [1]. Furthermore, bone
ingrowth could be defined as the formation of new
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bone tissue inside the porous surface of an implant
[1]. The ideal osseointegration should provide early
implant fixation with long-term stability of the pros-
thesis. The process of osseointegration reflects an
anchorage mechanism whereby non-vital compo-
nents can be reliably incorporated into living bone
and which persist under all normal conditions of
loading [2]. Thus, an implant is considered as osse-
ointegrated when there is no progressive relative
movement between the implant and the bone with
which it has direct contact [3,4]. The long-term du-
rability of joint prostheses is critically dependent
on adequate peri-implant bone stock which can be
compromised by wear-debris mediated osteolysis.

The contact area between the implant surface and
the bone is called bone - implant interface. This is the
field where the biology of osseointegration takes
place. When prostheses are implanted directly to
bone, the interface is the contact area between the
implant and the host bone. If prostheses are fixed
into the bone with the use of bone cement (poly-me-
thyl-meth-acrylate, PMMA), there are two interfac-
es: One between the bone and the cement and the
other between the cement and the implant surface.

The knowledge of the biologic pathways that
lead to either osseointegration or osteolysis and
aseptic loosening of an implant is the prerequi-
site for an investigator to understand the role of
treatment modalities and pharmacological agents
applied on experimental or clinical level and how
these agents could enhance osseointegration or
prevent osteolysis.

A. The pathway of osseointegration process

Bone healing at the interface area involves the
activation of osteogenetic, vascular and immuno-
logical mechanisms that are quite similar to those
occurring during bone healing [5]. Various cell
types, cytokines and growth factors are involved
and interact through the phases of osseointegra-
tion: inflammation, vascularization, bone forma-
tion and bone remodeling [6]. The initial host-bone
response after the implantation of prosthesis is an
inflammatory reaction elicited by (a) the surgi-
cal trauma during the insertion and impaction of

the implant, (b) the tissue reaction to the foreign
material, and (c) the thermal lesions to the bone
with the death of osteocytes. Initially, a hematoma
is formed at the bone-implant interface and plays
a role as a scaffold for peri-implant bone healing
[7]. The host response consists of: (a) platelet acti-
vation, (b) migration and activation of inflamma-
tory cells into the hematoma, (c) vascularization,
(d) mesenchymal cells and osteoblasts adhesion
to the implant surface, (e) proliferation of the cells
and protein synthesis, and (f) local factors and
cytokines composition [7-11]. It is of great impor-
tance the role of growth factors released from the
activated platelets. The growth factors are stored
in the platelets in special secreting granules, the
a-granules, and are excreted into the hematoma.
These substances were synthesized by the plate-
let’s precursor cell, the megakaryocyte, since the
platelet itself does not contain a nucleus or the nec-
essary elements for protein synthesis [12]. From
the implant side, an oxidation of metallic surfaces
has been also observed [13]. The osteogenic cells
that are adhered on the implant surface very early
(from day one) create a layer of non-collagenous
proteins that regulate cell adhesion and minerals
binding [14]. A few days after the implantation,
osteoblasts begin to deposit collagen matrix either
(a) onto the implant surface [11], or (b) into the afi-
brillar interfacial zone comparable to cement lines,
which is reach in non-collagenous proteins such
as osteopontin and bone sialoprotein [15]. Woven
bone is then formed by early deposition of fresh
calcified matrix to ensure tissue anchorage. Ulti-
mately, the woven bone is substituted by lamellar
bone, thus completing the biological fixation of the
implant [16]. The peri-implant osteogenesis pro-
gresses either (a) from the host bone towards the
implant surface (distance osteogenesis) or (b) from
the implant towards to the healing bone (contact
osteogenesis or de novo bone formation) [9]. During
osseointegration the vascularization process is
very essential as it influences cell differentiation
and ossification [17]. Ultimately, bone remode-
ling occurs for reshaping or consolidation of bone
at the implant site, providing a mechanism for
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TABLE 1. potential reasons for implant osseointegration failure and treatment strategies

REASONS OF FAILURE

Wear debris

Transfer of wear debris into the effective joint space

Inflammatory (cellular and molecular) response to wear
debris (particle-induced osteolysis)

Poor peri-implant bone quality

TREATMENT TARGETS

* Improvement of tribology and biomechanical properties
in order to decrease the production of bone debris

* Use of bone cement

* implant surfaces coatings with materials (hydroxyapatite,
trabecular metal) and rough surfaces manufactured

with nanotechnology in order to stop the transfer
of wear particles into the interface

* Pharmacological agents that induce bone formation
or stop osteolysis

* Molecular approaches to arrest osteoclast activity

¢ Anti-inflammatory strategies

* Pharmacological agents that increase bone density
and quality

self-repair and adaptation to loading and stress.

Conclusively, osseointegration of implants in
humans is a slow process and can last several
months or few years [18,19]. Despite, the current
knowledge of this process, a better understanding
of the cascade of events that occur at the cellular
and molecular level at the bone-implant interface
is needed in order to intervene with pharmacolog-
ical agents either locally or systematically and op-
timize the osseointegration of implants.

B. The pathway of aseptic loosening

The failure of joint implant is a disabling condition
that affects patient’s life and is very challenging
for the orthopaedic surgeon. There are five major
reasons for an implant failure: (1) an inadequate
initial implant fixation, (2) the stress shielding phe-
nomenon, (3) a systematic bone pathology such as
osteoporosis, (4) infection and (5) the periprosthet-
ic osteolysis.

At the latest, the generation of wear debris in-
duces bone resorption and aseptic loosening of
the implant. The generation of prosthetic implant
wear is recognized as the major initiating event
in development of periprosthetic osteolysis and
aseptic loosening, the leading complication of this
otherwise successful surgical procedure of joint ar-
throplasty [20]. (Table 1)

C. The biology of periprosthetic osteolysis

1. The cell biology of osteolysis

1a. Macrophages

In cases with osteolysis, the interfacial membrane
is extensively infiltrated with macrophages [21].
and the presence of wear particles in these cells
suggests active phagocytosis [22]. In vitro, cultured
macrophage linear cells and cell lines can recapit-
ulate this phagocytosis of wear debris [23-26]. This
experimental phagocytosis is accompanied by the
induction of pro-inflammatory mediators such as
prostaglandin E2 (PGE2), tumor necrosis factor al-
pha (TNF-a), interleukin-1 (IL-1P), and the pleio-
tropic cytokine Interleukin-6 (IL-6) [23,24,27-30] as
well as proteases such as matrix metalloproteinases
[31,32]. In these studies, the nature of the response of
macrophages including the expression and secretion
of the above mentioned mediators depends on nu-
merous parameters such as the composition, [33-35]
size, [26,36] shape,[37] volume, and surface area [35]
of the wear debris. Furthermore, in animal models of
osteolysis the role macrophages in response to par-
ticulate wear debris is also supported. Periprosthetic
cells in canine osteolysis model produced elevated
levels of proinflammatory mediators including PGE2
and IL-1 [38]. Periprosthetic cells from experimental-
ly induced polyethylene loosening in rabbits tibiae
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produced elevated levels of PGE2 compared with
cells taken from tissue around stable prostheses [39].
Smaller animals” models (mice and rats) of osteolysis
using different materials such as particulate polyme-
thacrylate (PMMA), ceramic powder, metal debris,
polyethylene debris and cement particulate debris
resulted also in macrophage response, production of
pro-inflammatory cytokines and inflammatory reac-
tions [29, 40-44].

1b. Osteoclasts
The pro-inflammatory response of macrophages to
particulate debris leads to excessive generation, re-
cruitment and activation of osteoclasts (OCs). Oste-
oclasts are multinucleated cells derived from circu-
lating precursor cells (OCPs) of the monocyte/mac-
rophage lineage and represent the only cell type ca-
pable of bone resorption [43]. Initially, OCPs are re-
cruited from the blood into the periprosthetic space
of patients with bone resorption and osteolysis, and
they are differentiated to OCs. Observation of pseu-
domembrane macrophage lineage cells isolated
from patients with osteolysis, display a greatly in-
creased propensity to differentiate to OCs [44]. The
increased OCP recruitment to periprosthetic tissue
is mediated via activation of chemokine expression
by the macrophages and fibroblasts. Chemokines
are the principal mediators of haematopoetic cell
recruitment to tissues and some of them, such as
MCP-1, MIP-1-a and IL-8, are highly expressed in
the periposthetic tissues of patients with osteolysis
[45-50] MIP-1-a chemokine increases OCs motility
and CCRI-1, a receptor for MIP-1-a is highly ex-
press in OCs and their precursors (OCPs) [51].
Wear particulate debris can generate functional
OCs from OCPs with direct and indirect mecha-
nisms. Directs mechanisms include: (a) the inhibi-
tion by titanium wear debris of the antiosteoclasto-
genic interferon gamma signaling in OCPs and (b)
the inhibition by titanium debris and PMMA bone
cement particles of IL-6 signaling which suppresses
the OCPs differentiation [52]. Indirect mechanisms
include: (a) the over-expression of bone pro-resorp-
tive actions of cytokines such as TNF-a and IL-1
[53-55] and (b) the modulation of RANKL/OPG

ratio [56]. Over-expression of TNF-a is sufficient
to induce calvarial osteolysis even in the absence
of added particles, emphasizing its proresorptive
characteristics in mice [57]. The other most impor-
tant indirect wear debris osteolysis mechanism
involves the RANK/RANKL/OPG system. Oste-
oblasts and stromal cells express the protein Re-
ceptor Activator of nuclear Factor-kappaB Ligand
(RANKL). RANKL is the key cytokine regulator
of osteoclast generation and activation. RANKL
binds to nuclear Factor-kappaB (NFkB or RANK)
expressed on the surface of OCs and OCPs, [58]
and is necessary for the differentiation of OCPs
to mature and functional OCs in the presence of
the survival factor MCSF. [59, 60] Osteoprotegerin
(OPG) is a naturally occurring decoy receptor for
RANKL functions to down-regulate-osteoclas-
togenesis by binding RANKL, thus preventing its
interaction with RANK [61]. There are three rea-
sons that support the theory that RANKL/OPG ra-
tio is a critical parameter in the regulation of bone
resorption and that elevated RANKL/OPG ratio is
correlated with osteolysis: (a) First, there is litera-
ture that identifies elevated RANKL expression in
the interfacial membranes from patients with oste-
olysis, with expression localized to the abundant
macrophages, giant cells, and fibroblasts in these
tissues [62-66]. Because macrophage lineage cells
generally are thought not to express RANKL under
normal conditions, expression of RANKL in such
cells presumably reflects up-regulation by wear de-
bris. (b) Second, RANKL blockade with OPG [67,68]
or RANK:Fc (a RANKL antagonist consisting of the
extracellular region of RANK fused to the Fc por-
tion of human IgG1), or by using mice genetically
deficient in RANK [69] prevented wear debris-in-
duced osteolysis in the murine calvarial model.
(c) Third, metallic and polyethylene wear debris
can increase the RANKL/OPG ration in murine
calvarial tissues, [70] and expression of RANKL
by cultured osteoblasts and fibroblasts [71] Titani-
um-related fibroblasts, and also fibroblasts isolat-
ed from arthroplasty membranes of patients with
osteolysis can support differentiation of OCPs to
OCs [71, 72].
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TABLE 2. The biology of osteolytic response

Cell types recruited into the bone-implant interface

Mechanisms of particle induced cellular activation

Mechanisms of cellular reaction

Phagocytes, macrophages, osteoclasts, fibroblasts,
osteoblasts/stromal cells

[1] Particle recognition by phagocytosis of small - sized
particles

[2] Cell surface interactions with the particles including:
(a) non-specific physical induction of trans- membrane
proteins, or
(b) recognition of cell surface molecules by particles or
proteins/factors that are adherent to the surface

Release large quantities of proinflammatory cytokines,
growth factors, metalloproteinases, prostanoids, lysosomal
enzymes, including the very critical TNF, IL-1a, IL-1, IL-6,
RANKL and PGE2

Ic. Osteoblasts

There are in vitro data suggesting a potential role
of osteoblasts (OBs) in the development of peri-im-
plant osteolysis. However, there are no in vivo tests
to confirm such a critical role. These in vitro studies,
consider whether wear debris, in addition to pro-
moting osteoclast activity, might also contribute to
osteolysis through inhibition of osteoblast’s function.
According to these in vitro studies, different particle
types can differentially affect OB activity and prolif-
eration [73]. Polyethylene debris decrease OB matrix
production [74]. Metallic particle such as titanium
reduce OB viability by inducing apoptosis, [75] and
also decrease expression of collagen type I and III by
OBs [76-78]. Titanium particles can also down-reg-
ulate OBs differentiation from mesenchymal stem
cells [79]. Finally, zirconium oxide particles induce
mesenchymal stem cells apoptosis and indirectly in-
hibit OB formation and function [80]. In conclusion,
if wear debris induce osteoclasts” function and si-
multaneously inhibit osteoblasts’ function, then the
coupling of resorption and formation that under nor-
mal conditions balance each other to allow bone re-
modeling and homeostasis would be totally blocked.

1d. Lymphocytes

The role of lymphocyte reactions in periprosthetic
osteolysis is still unclear. The evolution of second
generation metal on metal prostheses and the in-
volvement of metal hypersensitivity reactions, led

to the hypothesis that lymphocytic infiltrations into
the bone-implant interface play a role to osteolysis
[81,82]. T lymphocytes are key regulators of bone
metabolism due to their ability to generate pro-oste-
oclastogenic (RANKL) and anti-osteoclastogenic (in-
terferon-gamma) cytokines during activation [83-85].
However, involvement of T cells in periprosthetic
osteolysis has been controversial. Some earlier stud-
ies measuring the cellularity of periprosthetic tis-
sue from patients with osteolysis confirmed a great
amount of activated T cells [86,87] while later studies
found only non-activated or low amounts of T cells
[88,89]. In animal studies, mice with lymphocyte de-
ficiency or athymic mice did not show inflammatory
response to either polyethylene particles or titanium
particles injected into their knees [90,91]. However,
in other animal studies, mice with lymphocyte de-
ficiency retain their ability to form granulomas and
develop osteolysis in response to wear debris [92-94].

2. The molecular biology of osteolysis
Understanding the molecular signaling pathways
that regulate the expression of cytokines, chemok-
ines and proteases seen in the bone-implant inter-
face during osteolysis, is very important for focused
in vitro and in vivo experiments to identify potential
novel pharmacological agents that would block os-
teolysis or even enhance osseointegration.

The molecular responses to wear debris osteolysis
include three major systems: (a) the mitogen-acti-
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vated protein kinases pathway (MAP), (b) the ki-
nases and transcription factors interaction system,
and (c) the complement cascade. These molecular
pathways activation results in up-regulation of
proinflammatory signaling and inhibition of the
protective actions of antiosteoclastogenic cytokines
(e.g. gamma-interferon). (Table 2)

The MAP kinase are seronin/threonin-specific
protein kinases that respond to extracellular stimuli
(mitogens, osmotic stress, heat shock and proinflam-
matory cytokines) and modulates cellular activities,
such as proliferation, gene expression, differentia-
tion, mitosis, cell survival, and apoptosis [95]. There
are three major MAP kinase subgroups (p38, ERK,
JNK) involved in macrophages responses to wear
debris in vitro [24,52,96]. In vitro studies, showed
that MAP kinases are critical transducers of the sig-
nals emanating from wear debris/particle-cell in-
teraction to the nucleus. Inhibition of MAP kinases
(a) reduced ability of wear debris to induce proin-
flammatory cytokine induction in cultured OCPs,
[52] (b) reduced PMMA-mediated down-regulation
of IL-6 signaling, [52] (c) protects against inflamma-
tory bone destruction [97] and (d) blocks the wear
debris mediated expression of SOCS3, a suppressor
of antiosteoclastogenic cytokine signaling [52].

Particle-induced pathways lead also to activation
of kinases and transcription factors that are essential
for osteoclastogenesis. Among these are activation
of the tyrosine kinase c-src, the nuclear factor kB
cascade (NFkB), the NF-IL6, the AP-I as well as the
mitogen-activated protein kinases system (MAP) as
mentioned above [24,96,98-102]. The most notable
implication is showed for the NFkB factor. Lack of
this factor in experimental models results in inabil-
ity to generate functional osteoclasts and protection
against osteolysis [57,98,99]. In vitro inhibition of
NFkB blocked wear debris induction of osteoclas-
togenesis and osteolysis in small animals [103,104].

The complement pathway plays also a role to oste-
olysis. Complement receptors located on the inflam-
matory cells” membrane (CR3) and scavenger recep-
tors enhance titanium and PMMA particle uptake
and opsonization by the monocytes, macrophages
and phagocytes [24,105,106]. In vitro, administration

of antibodies against CR3 reduced macrophage up-
take of titanium and PMMA particles [24,106]. Al-
though activation of all these molecular pathways
might be secondary to other events, selective block-
ade of these downstream pathways with the admin-
istration of pharmacological agents seems to reduce
particle transmitted effects [107,108].

The influence of pharmacological agents

in the bone-implant interface

Many experimental studies have proved that vari-
ous pharmacological agents are effective in enhanc-
ing osseointegration, preventing osteolysis or treat-
ing aseptic loosening. (Table 3) Clinical trials have
also confirmed in many cases the in vitro and in vivo
results.

A. Pharmacological agents that positively

affect osseointegration

1. Antibiotics

Patients regularly take antibiotic chemoprophylaxis
few or several days postoperatively after a joint arthro-
plasty and the knowledge of how such agents affect
implant osseointegration would be very useful. In vit-
ro and in vivo studies showed that doxocyclin inhibits
osteoclastogenesis as well as PMMA or UHMWZPE-in-
duced osteolysis by inhibiting mature osteoclasts [109].
In another in vitro study, [104] erythromycin, a mac-
rolide antibiotic, suppressed wear debris-induced oste-
oclastic bone resorption. Erythromycin significantly in-
hibited mRNA expression of NF-kappaB, cathepsin K
(CPK), IL-1beta and TNFa, but not RANKS in the mice
cells stimulated with wear debris.

2. Anti-inflammatory factors

Anti-inflammatory agents have proved effective
when used for the treatment of osteolysis in ani-
mal models. Gene therapy with the anti-inflamma-
tory cytokines IL-1Ra or viral IL-10 protects mice
from the polyethylene debris induced osteolysis
[55]. In animal models, the administration of TNF
antagonists such as etanercept (a decoy receptor)
and pentoxyfilline (an inhibitor of secretion), di-
minished the particle induced osteolysis [6-19,106].
IL-4 is also secreted by T-lymphocytes, as the above
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TABLE 3. Pharmacological agents that affect bone-implant biology (osseointegration, new bone formation,

implant biomechanical properties)

Positive effect
Antibiotics (doxocycline, erythromycin)
Anti-inflammatory factors
RANK/RANKL/OPG system
Statins
Calcitonin
Bisphosphonates
Strontium ranelate

Parathyroid hormone / teriparatide

Negative effect
Cyclosporine-A
Methotrexate
Cis-platinum
Warfarin

Indomethacin

mentioned IL-10, and is effective in antagonizing
pro-inflammatory cytokine actions [110]. Finally,
IFN-y interferes with the RANK/RANKL signal
transduction in osteoclasts and their precursors. It
reduces degradation of tumor necrosis factor-re-
ceptor associated factor 6 (TRAF6), a RANK adap-
tor protein. This action results in failure to activate
RANK downstream signals such as NF-kB and
cJun/JNK pathways [110].

3. The RANK/RANKL/OPG system

The critical role of RANKL in inhibiting osteoclas-
togenesis makes this cytokine a very interesting
pharmacological agent for the therapy of osteolysis.
A dominant factor known to counteract the process
of RANKL - induced osteoclastogenesis and oste-
oclastic bone resorption is the natural RANKL re-
ceptor antagonist protein osteoprotogerin (OPG).
Many experimental studies [67,68,111,112] proved
that OPG gene therapy effectively halted the de-
bris-induced osteolysis, reduced local bone colla-
gen loss and regained the implant stability in these
murine models. In clinical level, the development of
denosumab, [120] a fully human monoclonal anti-
body that acts by binding to and inhibiting RANKL
could be a potential pharmacological agents that
could lead to loss of osteoclasts at the bone- mplant
interface area and thus, positively affect osseointe-
gration. However, there are still no clinical studies
proving this hypothesis.

4. Statins

Statins have been also considered as possible phar-
macologic agents for osteolysis due to their role on
blocking the mevalonate pathway. The recent discov-
ery that statins act as bone anabolic factors suggests
that these pharmacological agents can have a poten-
tial effect not only on the treatment of osteoporosis
but also on implant osseointegration. Preliminary
studies in animal models, [113-115] showed that sim-
vastatin markedly promoted bone formation and net
bone growth and decreased osteolysis in UHMWPE
particle-induced osteolysis. In vivo animal studies
with bone implantation models, [116,117] proved
that simvastatin administered either orally or by in-
jection enhanced peri-implant bone ingrowth or con-
tributed significantly to implant osseointegration.

5. Calcitonin

Calcitonin as a commonly used antiosteoporosis
drug in current clinical practice has also been exper-
imentally confirmed to produce the effectiveness of
promoting osseointegration at the interface between
prosthesis and host bone and enhancing the long-
term stability of the prosthesis [118-120]. However,
bisphosphonates produce more pronounced effec-
tiveness when compared to calcitonin [121] and this
is the reason why calcitonin is not clinically tested as
monotherapy for the prevention or reduction of the
osteolysis phenomenon or the enhancement of im-
plant osseointegration.
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6. Bisphosphonates

Bisphosphonates have been considered as thera-
peutic pharmacological agents for osteolysis. This
is based to their role on the osteoclastic apoptosis
by blocking the mevalonate pathway of isopre-
noid biosynthesis [122]. Several bisphosphonates
are intensively tested, especially alendronate, pa-
midronate and zolendronate, with either system-
ic (oral, iv) or local (localized drug delivery from
implant coatings) administration in animal and
clinical studies [122,123-127]. Most of these studies
proved that bisphosphonates: (a) increase peri-im-
plant BMD in cementless prostheses, (b) increase
peri-implant BMD even in cemented prostheses
when administered systemically, (c) reduce or
prevent particle-induced osteolysis, (d) reduce or
prevent peri-implant osteopenia induced by the
stress-shielding phenomenon, (e) enhance osse-
ointegration of cementless prostheses at the level
of bone-implant interface, (f) increase implant me-
chanical stability, and (g) eventually affect posi-
tively the long-standing durability of the prosthe-
ses. However, there are still many questions to be
answered: (a) there are still no studies comparing
treatment with different bisphosphonates in order
to know which bisphosphonate is the most effec-
tive, (b) there are no studies providing enough ev-
idence that the positive effect of bisphosphonates
treatment -noted in the early postoperative period
-is maintained long-term, (c) there are no studies
comparing the systemic with the local administra-
tion of bisphosphonates in terms of osseointegra-
tion enhancement, peri-implant BMD increase, os-
teolysis prevention as well as implant survival time.

7. Strontium Ranelate

Strontium ranelate is well known as an effective
antiosteoporotic agent by its dual effect of anti-re-
sorbing and bone-forming activity. There are sev-
eral recent studies testing this pharmacological
agent demonstrating that strontium ranelate has
a peri-implant bone anabolic effect, [128,129] and
enhances the bone biomaterial properties in the
bone-implant interface and peri-implant bone area
[130]. Conclusively, strontium ranelate is not only

an antiosteoporotic agent with anabolic bone effect
used in osteoporosis, but can also be used system-
ically or locally as a pharmacological agent that
would have a positive effect at the bone-implant
interface by increasing mechanical fixation of the
implant and improving implant osseointegration.
However, all above mentioned studies are in vivo
animal experiments and further investigation with
clinical studies by oral or local administration of
strontium ranelate is needed.

8. Parathyroid Hormone (PTH) and Teriparatide
In animal models, systemic administration of ter-
iparatide has enhanced implant osseointegration and
increased implant biomechanical properties [131,132].
There are no clinical studies investigating the effects
of PTH/teriparatide on the osseointegration of im-
plants in orthopaedic surgery. In dental surgery, a
recent open-label randomized controlled feasibility
study [133] provided the first histological data on the
osseointegration of titanium implants in individuals
treated with teriparatide. Teriparatide treated group
had significantly higher values for peri-implant new
bone formation than placebo group.

B. Pharmacological agents negatively affecting
osseointegration

Various pharmacological agents were found to
impair implant osseointegration, including cyclo-
sporine A, methotrexate and cis-platinum [134-
136]. The administration of warfarin was found to
significantly impair both the attachment strength
and the ingrowth of bone uncoated porous im-
plants made of cobalt-chromium-molybdenium
alloy; however no such inhibitory effect was ob-
served in hydroxyapatite-coated implants [137]. It
is also suggested that peri-operative administra-
tion of the NSAID indomethacin causes an early
and transient decrease in attachment strength, but
this finding does not seem to significantly affect
the long-term osseointegration of porous-coated
implants [138].
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H oAwr) apBpom\actikr), mapd to 0Tt fe@peital pia eSAapeTKI) XELPODPYLKT) TEXVIKI), OOVOEETAL [IE TIV OOTEOND-
01, ®G EMUIAOKI) TOV AIEAe0fepodpEV®OY OOPATIOIROV KAl TG EMEPXONEVT|G AONITTG XAAAP®ONG TG aVTioTOl-
xns npobeong. H maboyévela tov ouykekpipévoo TdIrov ootedAvong mepAapBavet pAeypoVOOELG KAl OOTEOND-
Tkég Oradikaoies. H yvoorn tov povonatiav, mov 0dnyody og avTeg Tig KOTTAPLKESG KAl PLOPLAKEG AVTIOPAOELS,
pIopet va dnptovpyrioet pia faorn ndave omyv onoia Oa avarrtoxfovv Oeparrevtikeg mapepPAacelg yia v avtt-
PET®ION TG PAEYPOV®DOODG IIEPUIPODETUKIG OOTUKI)G ATIMAELAG,.

Me avto to apBpo ot ovyypageig 8a nmpoomnadioovv va napabeécovv v napovoa PAcikr) yvaor) g ftolo-
ylag g oxéong ootov-tipobeong. Emiong Oa mapovotactei 1) alooida 1oV yeyovoT@V IO IIPOKDIITOLY 08 KUT-
TAPIKO KAl HOPLAKO EMITESO KAT TV O0TEOEVOMATAOOL), TNV 0OTEOALOT KAt TV donirty xaAdpaor). H yvoon
aotr) aroteAel XPIOI0 EPYANELD Yid EPELVITEG KAl 0pPOIIEdKODG XEPODPYODG, MOTE VA IAPEPPaivooy fe pap-
LOKEDTIKOOG IIAPCTYOVTEG EITE TOMKA, £iTE COOTRATKA, PEATIOTOIIOIMVTAG TNV OOTEOEVODHATMOT TRV IIPODE-
oewv. Téog, Ba avagpepBobdy ot pappakenTikég Kat Broloyikég mapepaoels, oo éxovv IPOo@ATA OOKIAOTEL.

AEZEEIX KAEIATA: ap@ponAaotiki), 00TE0EVOOPATMOI), 00TEONDOT), ACHIITH XAAAP®OT)
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