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1. Therapeutic strategies for the treatment of in-
tervertebral disc degeneration 
Intervertebral disc (IVD) degeneration (IDD) with 
a yet established incrimination in the aetiology of 
chronic low back pain (LBP) [1, 2] represents the 
leading cause of disability, activity limitation and 

loss of productivity in the adult population in 
Greece [3] and worldwide [4, 5]. 

IVDs, charged to play the role of suspension for 
the spine, intervene between vertebrae, with di-
rect adjacency to the superior and inferior cartilage 
endplates. They consist of an outer layer of concen-
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trically arranged fibrous lamellae (containing cells 
similar to fibroblasts) and a gelatinous core (with 
chondrocyte-like cells), namely annulus fibrosus 
(AF) and nucleus pulposus (NP), respectively [2]. 
In addition, native IVD stem/progenitor cells, ex-
pressing a set of mesenchymal stem cells’ surface 
markers, have been isolated from human degen-
erated discs [6]. The IVD is mostly extracellular 
matrix (ECM) characterized by a rigid AF colla-
genous network that encapsulates a well-hydrated 
NP proteoglycan (mainly aggrecan) matrix [2]. The 
negatively-charged IVD ECM and the diurnal com-
pressive load-driven water loss due to posture and 
other activities constantly expose IVD cells to ex-
treme variations in extracellular osmolality [7, 8]. In 
addition, the avascular nature of the tissue leads to 
oxygen deprivation, nutrients’ deficiency, acidic pH 
and accumulation of IVD cells’ metabolic byprod-
ucts and oxidative stress [7, 9]. As a consequence of 
this harsh microenvironment, a very low number of 
cells are embedded in the IVD ECM [2, 7, 10], with 
a pivotal role though in maintaining disc homeosta-
sis, since they are the producers of ECM molecules, 
as well as of the ECM-degrading enzymes [e.g., ma-
trix metalloproteinases (MMPs) and a disintegrin 
and metalloproteinase with thrombospondin motifs 
(ADAMTSs)]. 

IVD degenerative changes concern the number, 
phenotype and secretome of IVD cells, the accumu-
lation of inflammatory mediators and the disorgan-
ization of the ECM [11, 12], characterized by deple-
tion, cross-linking and oxidation of collagen and 
lower aggrecan content, which all lead to greater 
stiffness and progressive dehydration [12-14]. Fur-
thermore, cell number is reducing due to apopto-
sis at the same time that cell clusters are appearing 
possibly due to the degradation of the surrounding 
restrictive ECM. IVD ECM structural breakdown 
ultimately allows disc herniation and nerve intru-
sion that lead to LBP. Current IDD treatments such 
as administration of analgesics, non-steroidal an-
ti-inflammatory drugs and opioids, exercise, physi-
otherapy and spinal manipulation for rehabilitation 
mostly target symptoms’ alleviation without ad-
dressing the causes of the disease [12, 15]. On the 
other hand, invasive disc and spinal surgical pro-

cedures (discectomy, spinal fusion or arthroplasty) 
stand as the last recourse as they are high-cost and 
in many instances non-effective or even risky for 
post-operative complications [12, 16, 17]. 

In an attempt to override the limitations of the 
hitherto employed therapeutic strategies against 
IDD, injection of bioactive substances, genetic inter-
ventions or cell transplantation could serve as prom-
ising alternative options [12, 15]. One of the first ap-
proaches was based on the injection of growth fac-
tors in the degenerated disc, since these molecules 
induce not only disc cell proliferation and survival, 
but also the local production of ECM constituents 
by the cells [18, 19]. Indeed, disc cells secrete growth 
factors to which they respond with the activation of 
pivotal signalling pathways leading to cell prolifer-
ation [20-22]. Some of the growth factors that have 
been investigated in animal models against experi-
mentally induced IDD include TGF-β, IGF-I, basic 
fibroblast growth factor (bFGF) and various bone 
morphogenetic proteins (BMPs), with BMP-14 or 
growth and differentiation factor-5 (GDF-5) [23, 24], 
while natural mixtures of multiple growth factors, 
such as platelet-rich plasma (PRP) have been also 
proposed for such use [25, 26]. Among the disad-
vantages of this approach are its high cost, the in 
vivo proteolysis of growth factors and the possible 
adverse effects due to enhanced angiogenesis in the 
IVD. Still their use in vivo could be possible in con-
junction with appropriate biomaterials offering the 
capability of controlled release [17]. Unfortunate-
ly, the injection of growth factors (e.g., GDF-5 and 
BMP-7) and other bioactive substances (e.g., the IL-6 
receptor antibody tocilizumab and the TNFα selec-
tive inhibitor Etanercept) had no conclusive results 
in most cases so far [15, 17].

Gene therapy - that is the in vivo or ex vivo genetic 
manipulation of cells aiming at the modification of 
the deduced encoded products at the RNA and pro-
tein level - can be carried out using viral or non-vi-
ral vectors. Furthermore, genetic engineering tech-
niques employed for gene therapy could be RNA in-
terference or the recently discovered state-of the-art 
clustered regularly interspaced short palindromic 
repeats (CRISPR) [27]. TGF-β1, TGF-β3, connective 
tissue growth factor (CTGF), BMP-2, BMP-7, IGF-I, 
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latent membrane protein (LMP)-1, SRY-box tran-
scription factor (SOX)-9 and tissue inhibitor of met-
alloproteinases (TIMP)-1 delivery resulted in signif-
icant anabolic effects and increased ECM deposition 
[27, 28]. Despite these auspicious findings, skepti-
cism remains regarding the usage of viral vectors in 
clinical applications in humans due to the existing 
risk of insertional mutagenesis and immunogenici-
ty [29-31]. On the other hand, miR-29a, miR193a-3p, 
miR93, miR146, mR146a have shown ECM-promot-
ing or anti-inflammatory properties [17, 27]. Small 
interfering RNA (siRNA)-mediated knockdown 
has been used to target Fas ligand, ADAMTS-5, 
caspase-3 and mTOR in vitro and/or in vivo [27, 28]. 
CRISPR genome and epigenome editing have been 
also endeavored with some positive results [32, 33]. 
Non-viral gene therapy methods seem to be safer, 
but still have the disadvantage of lower transfection 
efficacies compared to viral vector methods [34]. 

2. Challenges for a successful IDD cell-based ther-
apy
As mentioned earlier, one of the initiating events of 
IVD degeneration seems to be the decline in the res-
ident IVD, and especially NP, cell number, which 
disrupts the balance between anabolic and cata-
bolic processes in ECM synthesis. Taking this into 
account, punctual NP supplementation by direct 
transannular or transpedicular intradiscal injection 
with functional cells - owning themselves or stimu-
lating in the resident cells a desired ECM-restoring 
and/or anti-inflammatory phenotype - can offer a 
potential solution for preventing or delaying IDD. 
Available cell sources for IVD cell-based therapies 
are autologous and allogeneic NP cells or articular 
chondrocytes; mesenchymal stromal cells (MSCs) 
able to both replenish the number of NP cells and 
to stimulate NP reconstruction; induced pluripotent 
stem cells (iPSCs) [17, 35]. Although autologous 
NP cells would be the ideal foolproof selection, fol-
lowed by articular chondrocytes, their low availa-
bility and proliferative potential or already acquired 
catabolic phenotype along with their high preva-
lence for de-differentiation when cultured in vitro 
have rendered them challenging or sometimes un-
suitable candidates for cell therapy. For that reason, 

the requirement for alternative options, such as NP 
and chondrocytic cells of allogeneic origin or MSCs 
and iPSCs, has emerged. Adult stem cells may con-
tribute to IVD regeneration either by their differ-
entiation into NP-like cells or by acting as feeders 
that induce the up-regulation of ECM synthesis by 
their native NP counterparts [36]. IVD progenitor 
cells also hold prospects for their potential use in 
IDD treatment [6, 12]. It is intelligible that in favor 
of using cells of allogeneic origin is that the patient 
is only subjected to one-step surgery, but the risk 
of stimulating an immunogenic effect always exists. 
Then again, the use of MSCs or iPSCs involves the 
peril of tumor formation [17]. As already mentioned 
above for growth factors, the use of biomaterials 
seems to be necessary for cells’ delivery in the disc, 
as well. These include hydrogels based on proteins 
(e.g. collagen) or polysaccharides (e.g. alginate) [37, 
38], composite systems, such as a collagen hydrogel 
supplemented with chondroitin sulfate [39], hydro-
gels cross-linked or in the form of microparticles and 
natural materials [40]. The first clinical trials based 
in the use of autologous or allogeneic MSCs resulted 
in pain relief. Clinical studies using discogenic cells, 
autologous disc chondrocytes or MSCs combined 
with biomaterials have been also conducted [14, 17]. 
Still, there is no until now strong evidence to sup-
port the preference of anyone of the cell sources.

An important step for the refinement of IVD cell 
therapy is the determination of the optimal timing 
and expedient precise cell number for intradiscal 
delivery (accounting for the putative cell leakage 
during injection at the delivery site and/or the cy-
totoxicity ensuing from the shear forces applied by 
the needle or from the harsh conditions of the final 
destination) in order to achieve maximal benefit. It 
is, for instance, important to apply the treatment 
when the grade of degeneration is still low, prior to 
the launching of an advanced and irreversible IDD 
to expect a possible successful regenerative effect. 
In addition, given that implanted cells (irrespective 
of the source) not only need to be able to survive 
but also to be functional and to produce ECM of the 
desired quality, it is essential to consider the hostile 
local IVD microenvironment, which worsens with 
the progression of degeneration [35]. 
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IVD cells’ responses to inflammatory cytokines
Inflammatory mediators including interleukins 
(ILs) and TNFα have been shown to be expressed 
in the human NP and what is more their expression 
along with the expression of their receptors increas-
es with age and in symptomatic and degenerated 
discs [41, 42]. ILs and TNFα have been reported to 
exert a catabolic/anti-anabolic effect in the IVD [43] 
[41]. We have shown that TNFα up-regulates MMP-
3 expression in bovine NP cells, which is attenuated 
by the presence of glucosamine [44].

IVD cells’ responses to mechanical stress
Mechanical loading is indissolubly connected with 
IVD homeostasis [45]. We have shown that cyclic 
tensile stress stimulates the expression of the pro-in-
flammatory genes, cyclooxygenase-2 (COX-2), IL-6, 
and IL-8 in AF IVD cells, mediated by members of 
the MAPK superfamily [46]. Moreover, changes in 
type II collagen expression and altered proteogly-
can synthesis have been reported as a response to 
the application of mechanical loads and hydrostatic 
pressure [45]. 

IVD cells’ osmo-regulatory response
High osmolality raises a torrent of biochemical 
events in NP IVD cells, as shown by our whole-ge-
nome array analysis, revealing the simultaneous 
transcriptional change of >200 genes [47]. We have 
shown that this stress is genotoxic and has an an-
ti-proliferative effect on NP cells [48, 49]. In addi-
tion, high osmolality restrained the mitogenic effect 
of platelet-derived growth factor (PDGF) or IGF-I 
via ERK and Akt activation [50]. This strict control 
of hyperosmolality on the proliferation of NP IVD 
cells is retained even after the administration of 
glucosamine, shown to result in an increase in the 
glycosaminoglycan content [51]. Regarding ECM 
components, it has been reported that aggrecan and 
collagen type II were up-regulated, while collagen 
type I expression was inhibited by high osmolality 
in human IVD cells [45]. 

IVD cells’ responses to oxidative stress
The presence of oxidative stress in the IVD has been 
established in vivo [9, 52-54]. We have shown that 

oxidative stress activated survival and stress signal-
ling pathways in human NP cells, while it proved to 
be genotoxic, triggering the activation of the DNA 
repair response [55]. Oxidative stress-induced NF-
κΒ activation has been also shown in the human NP 
in vivo [42]. 

Moreover, we have shown that a combination of 
all IVD conditions (i.e. low glucose, hypoxia, high 
osmolality and absence of serum) is anti-prolifera-
tive for IVD cells [56] and it has been reported that a 
concurrent exposure to low glucose, acidic pH and 
hypo-osmolality down-regulates the expression of 
ECM components and up-regulates the expression 
of MMPs [45, 57]. 

3. IVD cells’ senescence
A key step for the elucidation of IDD-related mod-
ifications in the IVD tissue microenvironment was 
the discovery of senescent cells in IVDs in vivo, first 
reported by Roberts et al. [10, 58] and later verified 
by other groups [59, 60]. There are two types of cel-
lular senescence: the “replicative senescence” attrib-
uted to telomere attrition arising from the consecu-
tive replications of the cells and the “stress-induced 
premature senescence” (SIPS) manifested as the re-
sult of several genotoxic stresses encountered by the 
cells [10, 13]. Given the restraining physicochemical 
conditions of the IVD microenvironment [61], se-
nescence in the IVD is most probably stress-induced 
rather than replicative [10]. Beyond their enlarged 
and irregular shape and their inability for prolifera-
tion, senescent cells are characterized by a catabolic 
and pro-inflammatory phenotype namely the “se-
nescence-associated secretory phenotype” (SASP) 
(consisting of soluble inflammatory mediators, pro-
teolytic enzymes or growth factors and insoluble 
ECM components) [13, 62, 63] that may contribute 
to the IDD-associated tissue remodelling. We have 
shown that senescent human NP cells up-regulated 
MMPs and ADAMTSs and down-regulated aggre-
can, biglycan, decorin and versican [55, 64]. MMP-1 
has been also shown to be up-regulated in line with 
the degree of the deformity in an experimentally 
induced scoliotic deformity rat model [65]. This se-
nescence-induced catabolic phenotype of the IVD 
cells has been confirmed using several means of se-
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nescence induction, as well as in a progeria mouse 
model in vivo [13]. Most importantly, we recently 
demonstrated that the IVD cells’ senescent pheno-
type is maintained when cells are cultured under 
the actual conditions they face in vivo (hyperosmo-
lality, low oxygen and glucose concentration and 
serum starvation), which supports their possible 
implication in IDD [56]. 

The implication of senescent cells in age-related 
diseases and the improvement of tissue homeosta-
sis by their elimination have been recently experi-
mentally supported by using the p16-3MR trans-
genic mouse model in which the p16INK4a-positive 
senescent cells can be removed by ganciclovir [66]. 
Reducing the number of senescent cells in aged 
mice increased IVD proteoglycan matrix content, 
thus improving the histological features of the disc 
[67] and indicating that cellular senescence could 
be a therapeutic objective for IDD. However, the 
above-mentioned approach cannot be applied to 
humans. A recently developed alternative is the use 
of new class of drugs that can selectively kill senes-
cent cells (senolytics) or reverse the inflammatory 
phenotype of senescent cells (senomorphics). Seno-
lytics activate the apoptotic machinery in senescent 
cells. Interestingly, the combination of the first se-
nolytics discovered, i.e. the well-known anticancer 
drug Dasatinib and the natural flavonoid Querce-
tin led to an increase of proteoglycans in the NP of 
prematurely aged transgenic animals [68], while the 
MDM2 inhibitor RG-7112 and the natural anti-ox-
idant and anti-inflammatory compound o-Vanillin 
express senotherapeutic properties in IVD cells and 
an ex vivo model [69, 70]. The above indicate a novel, 
non-invasive, approach for preventing or treating 
IDD and LBP. 

4. Conclusion
Based on the above, it becomes unambiguous that 
IVD microenvironment is a parameter that must be 

taken into account in the design of cell-based ther-
apies. The heretofore carried out pre-clinical and 
clinical trials using NP cells, chondrocytes or MSCs 
had already some encouraging results [14, 17]. Bet-
ter survival in the disc environment and improve-
ment of the clinical success for patients could be 
achieved by preconditioning of exogenous cells 
prior to implantation (e.g. under hypoxic and acid-
ic conditions and with culture medium enriched 
with growth factors), CRISPR-mediated knockout 
(e.g. of cytokine receptors to reduce inflammatory 
responses or of cell cycle regulators to delay se-
nescence) and knockin (e.g. of ECM components) 
or co-administration of senotherapeutics [35, 71]. 
Thus, more efficacious therapeutic options could 
be developed in the future, involving the joint 
application of appropriate cell sources, targeted 
genetic manipulations, bio-active substances and 
bio-compatible scaffolds. 
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