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In this opinion paper a concise introduction, describes the variety of published 2D and 3D 
related studies enabling deeper insight on the initial skeletal patho-remodeling during scoli-
ogenesis. The changes in the spinal column and thorax are quoted for adolescent, childhood 
and infantile idiopathic scoliosis (AIS, CIS and IIS). In spinal column the changes analyzed 
in frontal, transverse and sagittal plane, and is commented where is initially the spine de-
formed while developing the idiopathic scoliosis (IS) that is vertebra vs intervertebral discs 
(IVD). Next the initial changes at the rib cage (RC) and the impact of these changes on spine 
deformity are mentioned as well as the impact on RC of the spinal operations for correction 
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of AIS. Finally, the concept of the progression of IS due to the diurnal variation “accordi-
on”-like phenomenon of wedged IVDs is quoted and suggested as the 3D model of initial 
spinal changes of IS.

Introduction
Knowledge of normality is necessary for the study of 
abnormality. One way to study the normality, is the 
analysis of data which are collected not only from 
the Paediatric and Scoliosis Clinics of the outpatient 
departments of the hospitals but also from the im-
plementation of school scoliosis screening programs 
(SSSP). The SSSP beyond its original aim, which is 
prevention in terms of selecting and referring the 
scoliotic and asymmetric children, provides the op-
portunity for collection of various cross-sectional 
data of normal children in the general population 
(height, weight, menarche, handedness etc.) except 
of the similar data of asymmetric/ scoliotic chil-
dren and adolescents. Then comparison of normals 
to asymmetric/scoliotics can be done. SSSP serves 
also the epidemiology and natural history of idio-
pathic scoliosis (IS). Moreover and most interest-
ingly, SSSP is a “human evidence- based” “clinical 
research” tool of IS scoliogeny based on the study of 
humans not animals and on the established concept 
that the “morphology” expresses-reflects and deci-
phers-decodes the physiology and pathology. 

At the initial stages of IS development and pro-
gression, deformity is not easily diagnosed since the 
signs are subtle. The structural skeletal changes on 
the thorax and spine are initiated also gradually and 
the patho-remodeling happens more rapidly later 
during the rapid growth period of these children.

The aim of this opinion paper is to describe the 
sequential changes happening in the bones of tho-
rax in spinal column and the truncal deformity in 
initiating and mild IS and not at developed and 
progressed deformity. These initial changes are de-
scribed in the published radiological and clinical 

literature. 
First it would be necessary to have a look at the 

definitions of the severity of scoliosis. Mild idiopath-
ic scoliosis is characterized by a Cobb angle either of 
more than 10 and less than 30 degree1 or of more 
than 10 but less than 25 degrees2  or of more than 
10 but less than 20 degrees.3  Moderate IS is charac-
terized by a Cobb angle of 25–40 degrees, which is 
indicated for non-operative treatment4, 5 or a Cobb 
angle greater than 21 to 35 degrees.3 We consider 
as mild curves those with a Cobb angle of greater 
than 10 but less than 20 degrees and as moderate 
those with a Cobb angle of greater than 21 to 35–40 
degrees. The above published definitions are listed 
as we consider that “at initiating and mild scolio-
sis, the patho-biomechanics are dissimilar from the 
biomechanics when the curve is severe”. Further-
more, it appears that at initiating and mild IS, ge-
netics, epigenetics, and biology have the dominant 
/ protagonistic aetiological role, having non or min-
imal structural skeletal changes; however, it should 
not have overlooked the non-protagonistic role of 
patho-biomechanics, which later become dominant 
for progressive IS, when the skeletal deformities are 
well established.

At present, more frequently three-dimensional 
analysis is used as a procedure to study the mor-
phology of IS curvature and rib cage, as any study 
based exclusively on coronal, sagittal or transverse 
plane has its limitations. However, the most impor-
tant and frequently used radiological parameters 
are designed and measured on postero-anterior (P-
A) and lateral radiographs (i.e. Cobb, Mehta RVAs, 
Perdriolle angles). Lateral radiographs are not sys-
tematically made for children with IS in most hos-
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Figure 1: The readings on the PA radiographs Cobb angle (CA), apical vertebral rotation (AVR), apical vertebral 
wedging (AVW) and the adjacent to the apical vertebra Upper (UIVDW) and Lower (LIVDW) Inter-Vertebral Discs 
Wedging.5 

pitals and the useful parameters for longitudinal or 
retrospective studies are taken almost exclusively 
from frontal plane radiographs. Currently the new 
technology of GAN-based deep learning framework 
can generate synthetic sagittal radiographs from 
coronal views to cure the limitation of missing later-
al radiographs and to reduce radiation exposure in 
monitoring AIS. However, while these synthetic im-
ages appear visually consistent with real ones their 
quality remains insufficient for accurate clinical as-
sessment, as the authors note.6

Imaging available for retrospective studies pri-
marily consists of frontal plane radiographs. Plain 
chest and spinal films, which are readily accessi-
ble in medical archives, can effectively provide 
the necessary parameters for studying the onset, 
development, and progression of scoliotic thoracic 
and spinal deformities, without requiring addition-
al special radiographs or extra radiation exposure. 
By utilizing the initial films of IS patients, the 2D 
parameters can support both cross-sectional and 
longitudinal studies on the development of these 

children or those with truncal asymmetry at risk 
of developing scoliosis.6 Furthermore, these films 
can be used for both prospective and retrospective 
studies on non-operative and operative treatments 
of IS, as long as radiographic procedures are stand-
ardized. Such studies are also valuable for examin-
ing post-operative thoracic and spinal column mor-
phology, allowing us to assess the impact of surgery 
on remaining growth potential and the progression 
of thoracic and spinal deformities.7 It is important to 
note that the models currently used for predicting 
the progression of IS curves in cross-sectional and 
longitudinal studies also rely on parameters from 
2D radiographs. This is because the foundation-
al data for IS assessment, which forms the basis of 
these models, was primarily derived from 2D imag-
ing methods in most centers, rather than 3D. While 
3D analysis is increasingly used to study the mor-
phology of scoliotic children, studies based solely 
on the coronal or sagittal planes have inherent lim-
itations.8-10

Dansereau el al. 1987 proposed a 3D rib cage as-
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sessment, which certainly offers interesting possibil-
ities but requires special equipment.7-9 However, 3D 
reconstruction from CT scans is not routinely per-
formed due to exposure to ionizing radiation.10, 11 

In recent years, there has been a rise in transdis-
ciplinary studies using machine learning on clinical 
data to develop in-house programs for predicting 
curve progression, which involves specialized ter-
minology that may be not only challenging to digest 
yet difficult to assess. It is also interesting to note 
that these currently developed models of the pre-
diction of progression of IS curves use as predicting 
parameters resulted from 2D radiography.12-16  

Initial changes in the spinal column in IS

Initial changes in the spinal column: In frontal 
plane
The frontal plane morphology of the spine during 
the initial development of IS, has been reported.5  In 
standing P-A radiographs of 92 children suffering 
mild scoliotic IS the following readings were ob-
tained: Cobb angle (CA), apical vertebral rotation 
(AVR), apical vertebral wedging (AVW) and the 
adjacent to the apical vertebra Upper (UIVDW) and 

Lower (LIVDW) Inter-Vertebral Discs Wedging 
(Fig. 1). The mean thoracic CA was 13,4°, lumbar 
CA 13,8°, thoracic AVR 5,3°, lumbar AVR 4,7°, tho-
racic AVW 1,4°, lumbar AVW 1,5°, thoracic UIV-
DW 1.6°, thoracic LTVDW 1°, lumbar UIVDW 1,3° 
and lumbar LIVDW 2°. It was shown that in mild 
IS curves, when the deformity is initiating, the IVD 
is found wedged, but not the vertebral body. The 
spine is deformed first at the level of the IVD, due 
to the increased plasticity of the IVD, in the way of 
either torsion or wedging as an expression of other 
initiating factors that may start the deformity.5  

In their 2009 study, Will et al. aimed to assess the 
relative contributions of vertebral and disc wedg-
ing to the increase in Cobb angle in IS by examining 
18 girls across three phases of adolescent skeletal 
growth and maturation.17 Their findings, consistent 
with Grivas et al.’s 2006 study, concluded that AIS 
first increases due to IVD wedging during the rapid 
growth spurt, followed by a gradual progression of 
vertebral wedging at a later stage.5 

Initial changes in the spinal column: In sagittal 
plane
The lateral spinal profile (LSP) and its significance 

Figure 2. The Lateral Spinal Profile for the various groups of children, boys and girls. Yellow bars = thoracic curves, 
azure bars = Thoracolumbar curves, mauve bars = lumbar curves, line with blue diamonds = straight spines, line with 
red rectangles = curves with Cobb < 10 degrees.35
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in IS scoliogenesis is a topic that was discussed 
by research for many years.18-38 The LSP was often 
regarded as a primary cause of IS because the ky-
photic thoracic apex in IS is positioned higher in the 
thoracic vertebrae, causing more vertebrae to tilt 
posteriorly. This creates conditions of increased ro-
tational instability, leading to a higher susceptibili-
ty for the development of IS.28 The role of the con-
figuration of the sagittal profile in the initial stages 
of development in IS was reported by Grivas et al.35 
This study assessed the lateral spinal profile (LSP) 
in school-screening referrals with and without 
late-onset idiopathic scoliosis (IS) of small curves 
(10°-20° Cobb angle) in 133 children—47 boys and 
86 girls, with mean ages of 13.28 and 13.39 years, re-
spectively. The Axial Trunk Rotation (ATR), Cobb 

angle, and segmental spinal profile from T1-L5 
were evaluated. Intervertebral LSP (ILSP), which is 
the difference between two consecutive spinal lev-
els of LSP, was also calculated. Five groups were 
established: 1) straight spines, 2) spinal curvatures 
with Cobb angles less than 10°, and 3) scoliotic chil-
dren with a) thoracic, b) thoracolumbar, and c) lum-
bar curves of 10°-20° (Fig.2). 

The results indicated that scoliotic children had 
slightly less kyphotic segmental angulation and al-
most normal lordotic angulation compared to nor-
mal children. LSP correlations with the Cobb angle 
showed: a) a positive correlation at T6, T7, T8, and 
T9 in thoracic curves of scoliotic boys, and b) a neg-
ative correlation at T3, T4, and T5 in lumbar curves 
of scoliotic girls. The observed LSP differences were 
primarily located in the lumbar spine, suggesting 
that factors affecting the lumbar spine in the sag-
ittal plane contribute to the development of AIS in 
boys. The slight hypokyphosis of the thoracic spine 
and the minimal differences observed in the small 
curves when compared to non-scoliotic individuals 
support the idea that reduced kyphosis may facil-

Figure 3. Study of the sagittal profile of the spine in IS 
using radiography and surface topography.42
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itate axial rotation, acting as a permissive factor 
rather than an etiological one in the development of 
IS. In other words, a straight (non-curved) beam is 
more easily rotated than a curved one.35  

The view that the reduced kyphosis, by facilitat-
ing axial rotation, could be viewed as being permis-

sive, rather than as aetiological, in the pathogenesis 
of IS was confirmed in other research studies.39-41 
The sagittal profile of the spine in IS was evaluat-
ed using surface topography and radiography. The 
study included 45 children, 4 boys and 41 girls, with 
an average age of 12.5 years (range 7.5–16.4 years), 

Figure 4: Segmental Rib-vertebra angles (RVAs),in infant childhood and adolescent boys and Girls.45

Figure 5: Segmental RVAD in Boys and girls by Infancy Childhood and Puberty (ICP) model.45
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who were referred to the scoliosis clinic from the 
SSS. The children were divided into two groups: 
Group A consisted of 17 children with IS (15 girls 
and 2 boys), all of whom had a scoliometric trunk 
asymmetry of 5 degrees or greater. Group B, the 
control group, included 26 children (15 girls and 11 
boys) with an Axial Trunk Rotation (ATR) of less 
than 2 degrees. The children’s height and weight 
were measured, and the Prujis scoliometer was 
used during the standing Adam test in the thoracic 
(T), thoraco-lumbar (TL), and lumbar (L) regions. 
The Cobb angle was assessed using postero-anteri-
or radiographs in Group A. A posterior truncal sur-
face topogram was also taken using the “Formetric 
4” apparatus, and the distance from the vertebral 
prominence (VP) to the apex of the kyphosis (KA), 
as well as from VP to the apex of the lumbar lordo-
sis (LA), was calculated. The ratio of the distances 
(VP-KA) to (VP-LA) was also computed. The aver-
ages of these parameters were analyzed, and the 
correlation between the ratio of distances (VP-KA) 
to (VP-LA) and the scoliometer and Cobb angle 

measurements were assessed (Pearson correlation 
coefficient, r) within both groups and between them 
(Fig.3). 

In Group A (IS), the average height was 1.55 
m (range 1.37–1.71) and the average weight was 
47.76 kg (range 33–65). The children with IS had 
right-sided (Rt) thoracic (T) or thoracolumbar (TL) 
curves. The mean Cobb angle for thoracic curves 
was 24 degrees, and for lumbar curves, it was 26 
degrees. In the same group, the kyphotic apex (KA 
(VPDM)) distance was −125.82 mm (range −26 to 
−184), and the lordotic apex (LA (VPDM)) distance 
was −321.65 mm (range −237 to −417). The correla-
tion between the ratio of distances (KA (VPDM) / 
(LA (VPDM)) and the Major Curve Cobb angle as 
well as the scoliometer findings were not statistical-
ly significant (Pearson r = 0.077, −0.211, p = 0.768, 
0.416, respectively). Similarly, in the control group, 
the ratio of distances (KA (VPDM)) / (LA (VPDM)) 
was not significantly correlated with scoliometer re-
sults (Pearson r = −0.016, p = 0.939). The findings of 
this and the former mentioned study35 do not con-

Figure 6: Radiological evaluation of the deformation of the Thoracic Cage in AIS.49  
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firm this hypothesis, that lateral profile of the spine 
is a primary aetiological factor for IS, since the cor-
relation of the (VP-KA) to (VP-KA) ratio with the 
truncal asymmetry, assessed with the scoliometer 
and Cobb angle measurements, is not statistically 
significant, in both groups A and B. In addition, the 
aforementioned ratio did not differ significantly be-
tween the two groups in other studied samples.39-41

As mentioned earlier, it seems that the patho-bio-
mechanics in the early stages and mild forms of IS 
may differ from those in more severe curves. The 
studies referenced above offer insight into wheth-
er there is an inherent disorder in vertebral body 
growth in mild to moderate IS. It was observed that 
the sagittal profile of these IS curves does not dif-
fer significantly from the profile of normal peers.35 
In other words, the growth potential in the sagittal 
plane (lateral spinal profile) for mild to moderate 
IS is similar to that of peers with normal spines, 
affecting both the vertebral bodies and interverte-

bral discs (IVDs). These two studies suggest that 
hypokyphosis is not a primary cause of the onset 
or progression of mild to moderate scoliotic curves, 
contrary to what has been reported elsewhere.28 
Moreover our view is consistent with views previ-
ously published.43 

Initial changes in the spinal column: In transverse 
plane
In mild curves, the rotation of the apical vertebrae 
is minimal, this morphology plays a crucial role in 
obtaining an accurate sagittal profile. Since the sag-
ittal profile in these cases is only minimally affect-
ed, it leads to more reliable measurements, which is 
essential for our assessment.5, 44 

Initial changes in the thoracic cage, Impact of the 
thoracic on the spine deformity
Initial changes in the thoracic cage in Adolescent 
Idiopathic Scoliosis

Figure 7:  A)a, Cobb angle Rt lumbar IS curve with a longer Rt 12th rib, likewise in b, a 22 of Cobb angle Rt lumbar 
IS with a Rt 12th rib longer B) QL attachments, C) the suggested hypothesis for Rt lumbar IS curves.54 
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The study of the segmental (T1-12) RVAs and seg-
mental rib-vertebra angle differences (RVADs), was 
reported as a new method (Fig 4, Fig, 5). The Infan-
cy Childhood and Puberty (ICP) model of growth 
was used for analysis of these data.46  It was hy-
pothesized that RVAs are influenced by the central 
nervous system (CNS) mediated trunk muscle ac-
tivity, and RVADs pattern reflects the common age, 
sex, and laterality patterns of IS. Extremes of such 
asymmetries may be an aetiological factor for both 
IIS and AIS. Segmental analysis of RVAs in AlS RC 
(Fig. 5), reveals crossed RVA asymmetry with aeti-
ological implications.45, 47 

The findings from these cross-sectional studies 
highlight the changes in the RC’s structure by age 
and gender during growth. It is proposed that the 
funnel-shaped RC of neonates gradually trans-
forms into a barrel-shaped structure as they grow, 
which, from an evolutionary perspective, may 
represent an adaptation of the RC to the human 
bipedal gait.48, 49 The above led to a novel multifac-
torial theory for the pathogenesis of IS.43 

A comparison of the RVAs between scoliotic 
and nonscoliotic children, involving 47 children 
with T, TL and L curves ranging from 10-20 de-
grees of Cobb angle and an average age of 12.4 
years, and 60 age-matched non-scoliotic children, 
revealed that the RC of the late onset scoliosis 
(LOS) children had significantly lower RVAs 
(p<0.01) at nearly all thoracic levels.49 It was re-
ported that RVAs is an expression of the opposing 
muscle forces, that act on each rib, and that RVA 
asymmetries are aetiological for IS by weakening 
the spinal rotation defending system.43 This study 
showed that scoliotic children with mild curves 
have underdeveloped RC compared to normal 
(Fig. 6). The differences are most pronounced 
in scoliotic children with thoracic curves. It has 
been suggested that the variations in RVAs be-
tween the right and left sides in this group reflect 
asymmetric muscle forces acting on the RC. We 
concluded that these asymmetric muscle forces 

Figure 8: Segmental thoracic ratios (TRs): way of 
measurement and values for boys and girls in infancy, 
puberty and adolescents.60
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contribute to the pathogenesis of IS by deforming 
the RC prior to affecting the spine.49 

One characteristic of the deformation of thorax 
in IS is the drooping of RVAs. Measurement of the 
drooping value in convex RVA is equally important 
as that of initial convex RVA or RVAD in the liter-
ature.50 

Interesting, Sevastik et al 1997, studying the 
RVAs in IS, concluded that the typical pattern of the 
RVAs on the concave and convex sides seems to be 
independent of the underlying cause of the spinal 
curvature.51  

Canavese et al. (2011) reported that in their study 
of AP digital radiographs of 44 female patients with 
right convex idiopathic scoliosis and 14 normal fe-
males, the RVAD and RVARa values in the scoliot-
ic segment were higher in patients with untreated 
scoliosis greater than 30° compared to those with 
untreated deformities of less than 30° or normal 
subjects. A significant difference was observed be-
tween the groups for the RVA, RVAD, and RVARa 
variables. They also recommended that measure-

ments of RVA, RVAD, and RVARa should be con-
ducted not only at or near the apex of a thoracic spi-
nal deformity but should also encompass the entire 
thoracic spine.52 Foley et al (2012) commented that 
RVAD 3D provides additional information to Me-
hta’s RVAD on the torsional nature of the deform-
ity.53  

Initial changes in the thoracic cage in lumbar AIS
Grivas et al. (2016 in their study of idiopathic and 
normal lateral lumbar curves (LLC), discussed the 
presence of asymmetry in the length of the 12th  rib 
associated with these curves.54 They proposed a 
pathomechanical role for the quadratus lumborum 
(QL), based on the novel finding of bilateral length 
asymmetry of the 12th rib in relation to IS and mi-
nor non-scoliotic LLC (Fig. 7). To the 12th ribs are 
attached numerous small muscles, including the 
diaphragm, QL, internal and external intercostals, 
serratus posterior inferior, short and long rib eleva-
tors, external oblique abdominal, internal oblique 
abdominal, transversus abdominis, iliocostalis and 

Figure 9: The rib-cage deformity in infantile idiopathic scoliosis-the funnel-shaped upper chest.60
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longissimus thoracis. The largest of these muscles is 
the QL, which attaches to the pelvis, 12th ribs, and the 
transverse processes of the lumbar vertebrae, likely 
exerting the greatest forces on the 12th ribs. Two the-
ories were proposed: a) the relatively increased ac-
tivity of the right QL muscle causes the LLC curves, 
and b) the QL muscle counteracts the lumbar cur-
vature as part of the body’s attempt to compensate 
for the curvature.55 Grivas et al. (2016) suggested 
that one mechanism behind the relatively increased 
length of the right 12th rib is mechanotransduction,54 
in line with Wolff’s and Pauwels’ laws (Fig. 7).55-58 

Based on the research outlined above, the impli-
cation is that the rib cage, particularly the asymme-
try of the 12 pairs of ribs, precedes and plays a role 
in the pathogenesis of IS, contributing to the devel-
opment of lumbar spinal deformity.

Initial changes in the thoracic cage in Infantile id-
iopathic scoliosis - Segmental thoracic ratios (TR) 
and Segmental TR differences (TRs)
Segmental thoracic ratios (TRs) were measured at 
each segment (T1-T12) in chest radiographs of 412 
children, aged 0-17 years, who visited the hospi-
tal with minimal disorders or diseases (193 boys, 
219 girls). A new method for measuring TRs was 
employed, which calculates the width of the left 
hemithorax, right hemithorax, and the total tho-
rax relative to the T1-T12 distance.59 The data were 
analysed in 3 age groups--infancy, childhood and 
puberty, after the classification of Karlberg (1989).46 
The study’s analysis revealed several key findings. 
In the coronal plane, the chest broadens from T1 to 

Figure 10. The way the RI is assessed on the standing lateral spinal radiographs.64

Figure 11: The way the segmental RI (SRI) is assessed 
on the standing lateral spinal radiographs.65

Grivas TB, et al. ΑΟΤΗ. 2025;76(2):37-59



48

about T10-11 between infancy and childhood, while 
relative to its length, the chest narrows from top to 
bottom, particularly in the lower chest. Between 
childhood and puberty, the chest narrows further in 
girls (but not in boys) in the lower half below T6. 
This relative narrowing of the chest during growth 
appears to result from several mechanisms: (1) el-
evation of the upper rib-vertebra angles (above 90 
degrees); (2) drooping of the lower rib-vertebra an-
gles (below 90 degrees); and (3) impaired linear rib 

growth in relation to thoracic spinal growth in the 
lower ribcage (T6-12) of girls between childhood 
and puberty (Fig. 8).45 

The role of the rib cage in the development of 
progressive infantile idiopathic scoliosis (IIS) was 
investigated by Grivas et al. (2006) using segmental 
thoracic ratios from posteroanterior (PA) spinal ra-
diographs of 24 patients with progressive IIS, with a 
mean age of 4.1 years. Thoracic ratios (TRs), includ-
ing segmental convex and concave TRs, Cobb angle, 

Figure 12. the contours of the two hemithoraces were al-
ways overlapping the one over the other, and this overlap-
ping is the “double rib contour sign” (DRCS).61-63

Figure 13. The linear relationship between thoracic Cobb 
angle and RI is graphically depicted. There is only linear 
association between thoracic Cobb Angle and rib-index in 
the age group of 14–18 years.34 (Predicted Thoracic Cobb 
Angle = - 6.357 + 7.974 Χ (Rib-Index).63, 72, 84

Figure 14: the three-joint complex of Dr WH Kirkadly-Willis.98

Grivas TB, et al. ΑΟΤΗ. 2025;76(2):37-59



49

segmental vertebral rotation, and vertebral tilt were 
measured (Fig. 9)60. 

Additionally, in a control group of 233 subjects 
with a mean age of 5.1 years, the segmental left and 
right TRs and the total width of the chest (left plus 
right TRs) were measured in PA chest radiographs. 
Statistical analysis, including Mann-Whitney, Spear-
man correlation, multiple linear regression, and 
ANOVA, was performed. The comparison showed 
that the scoliotic thorax is significantly narrower 
than that of the controls at all spinal levels. The up-
per chest in IIS is funnel-shaped, and vertebral rota-
tion at T4 early in management significantly corre-
lates with apical vertebral rotation at follow-up. The 
IIS thorax is narrower than that of the control group, 

with a funnel-shaped upper chest. Vertebral rota-
tion at the upper limit of the thoracic curve in IIS is 
predictive, reflecting impaired rib control of spinal 
rotation, likely due to neuromuscular factors, which 
also contribute to the funnel-shaped chest (Fig. 9).60 

Double Rib Contour Sign (DRCS) – Rib Index (RI) 
and Segmental Rib Index (SRI)
The “double rib contour sign” and the rib index 
(DRCS and RI), were introduced in 1999 (Fig 10) by 
the first author and lately the Segmental Rib Index 
at all levels from T1 to T12 (Fig 11).61-66

The significance of using these parameters lies in 
their contribution to scoliogenesis.63, 65, 67 

Additionally, the rib index (RI) has been con-
firmed to a) serve as a strong surrogate for scolio-
metric readings in idiopathic scoliosis (IS),68 and b) 
assist in the documentation of the thoracic deform-
ity in the transverse plane,61 the assessment of phys-
iotherapy outcomes–(PSSEs),70

tracking the results of brace treatment,71, 72 assess-
ing pre- and post-operative thoracic deformity cor-

Figure 15: The imbibed water (+ H2O) mainly in the 
apical IVD but also in the adjacent discs must be in a 
greater amount in the convex side than in the concave 
due to convex-wise asymmetrical distribution of glycos-
aminoglycans (GAGs) in NP collagen network type II. 
This results in: 1) asymmetrical pattern of water distri-
bution, 2) Due to DV, asymmetrical convex-wise, con-
centrated cyclical loads to the IVD during the 24h, the 
convex side of the wedged IVD sustains greater amount 
of expansion than the concave side and as an eventual 
result the vertebra deforms.99

Figure 16: The loading on the two facet-joins and IVDs 
is asymmetrical. The asymmetrical loading during the 
day occurs as the wedged IVD space narrows due to the 
expelled water, and decreases asymmetrically during the 
night as the IVD space swells due to the imbibed water. 
This results in asymmetrical growth of vertebral bodies 
and their posterior elements and also this is reflected in 
minor fluctuation of Cobb angle during the 24hour pe-
riod, as was reported in Zetterberg et al 1983,101 in the 
younger and more skeletally immature individuals.99
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rection with different types of instrumentation,73-82 
the use in prognosticating the accelerated deterio-
ration in skeletally mature adolescent idiopathic 
scoliosis (AIS) curves of 40-50 degrees,83 and helps 
in recognition of the proper rib level for thoracol-
pasty/costoplasty.82

During the clinical assessment of children with 
truncal asymmetry (ATR ≥ 5 degrees) referred from 
the SSS program, it was observed that in their lateral 
spinal radiographs, the contours of the two hemith-
oraces consistently overlapped, appearing asym-
metrical. This observation was systematically noted 
in these asymmetric children, regardless of whether 
their spine was scoliotic or not. This overlapping 
was termed the “double rib contour sign” (DRCS) 
(Fig 12). 

Consequently, the need for quantification of the 
degree of this overlapping, that is the asymmetry 
of this DRCS, in other words the thoracic deformity 
in terms of the hump, in the transverse plane, trig-
gered the introduction of the RI (Fig 10).63 The use of 
the RI helps prevent metric errors caused by varia-

tions in magnification on films showing the thorax. 
Furthermore, when plotting the RI against the Cobb 
angle, it was found that in girls under 13 years of 
age, there was no statistically significant correlation 
between their RI and Cobb angle. In other words, 
the spinal deformity was not related to the thoracic 
deformity assessed by the RI. It was also observed 
that in this age group, an RI of 2.5 corresponded to 
a Cobb angle of less than 10°. In older girls of age, 
the RI was statistically significant correlated with 
the Cobb angle (Fig. 13).34 A 2.5 RI expresses a pro-
gressed thoracic deformity.83

The impact of growth on the correlation between 
spinal and rib cage deformities is evident. Growth 
significantly influences the relationship between 
thoracic and spinal deformities in girls with IS. 
Therefore, it must be considered when assessing spi-
nal deformities from surface measurements. Based 
on the research outlined above, the implication is 
that rib cage deformity precedes spinal deformity in 
the pathogenesis of IS, particularly for thoracic and 
thoracolumbar curves. This perspective aligns with 

Figure 17: Pauwels’ law states that intermittent pressure within the normal range of stress and strain stimulates the 
growth plate of a healthy bone. Wolff’s law states that bones in a healthy individual will adapt to the loads they receive. 
If the load is increased, the bone will progressively remodel to become stronger to withstand the load. Hueter-Volk-
mann principle “Continuous increased axial compression on the growth plate retards growth”.
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previously reported views.85-97 

The impact of the spinal operations on the thorax 
for correction of AIS 
The rotation of the trunk and vertebral bodies, 
though interrelated, are analyzed as distinct param-
eters. It was shown that while surgery straightens 
the spine, the rib hump (RH) is corrected only to the 
extent of the spinal derotation achieved through the 
surgeon’s instrumental adjustments. Additionally, 
not only is the hump incompletely corrected, but it 
also recurs and worsens during follow-up, particu-
larly in skeletally immature scoliotic children who 
have undergone surgery. The only way to more 
effectively correct the RH is through costoplasty. 
The primary reason for this phenomenon is that 
RH deformity (RHD) is mainly caused by asym-
metric rib development, rather than the rotation 
of the vertebrae in the thoracic spine. Surgery on 
the spine cannot address rib asymmetry or halt the 
mechanism that leads to their uneven growth. The 
findings from all the reviewed studies highlight the 
crucial role of RHD in scoliogenesis, as it precedes 

the development of the spinal deformity.82 

The Progression of Idiopathic Scoliosis due to the 
Diurnal Variation “accordion”-like Phenomenon 
of Wedged Intervertebral Discs
In 1983, Dr. Kirkaldy-Willis described the interver-
tebral articulation as a “three-joint complex”, in-
cluding the disc anteriorly and the two facet joints 
posteriorly (Fig 14).98

Grivas (2021) proposed a concept for the progres-
sion of idiopathic scoliosis (IS) that emphasizes the 
role of diurnal variation in the asymmetric water 
distribution of the eccentric nucleus pulposus in 
the deformed scoliotic IVD, and how this affects the 
mechanical environment due to intermittent forc-
es acting on the adjacent vertebral growth plates. 
These intermittent forces, driven by diurnal varia-
tion (DV), lead to asymmetrical vertebral growth 
and the progression of the IS deformity, a process 
referred to as the “accordion-like phenomenon.” 
The supporting data for this concept draws on 
mechanobiology, the mechanotransduction pro-
cess, as well as the fundamentals of spinal column 

Figure 18: The vicious cycle of patho-remodeling in apical and adjacent vertebrae in a IS curve, due to alteration of 
the mechanical environment and modulation of the endochondral growth of the immature vertebrae. (Modified from 
our citation.99
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embryology and biology. It also connects to the 
normal and deformed intervertebral disc, the di-
urnal variation phenomenon, concepts of IS scoli-
ogenesis, the three-joint complex, sleep phases, and 
muscular tone. This background information aims 
to clarify and make understandable the concept of 
“the diurnal variation accordion-like phenomenon 
of wedged intervertebral discs,” which is proposed 
as a key 3D progression factor in IS (Fig 14, Fig 15).84 

The asymmetrical anatomical growth changes 
not only in vertebral bodies but also in the posterior 
vertebral elements have been confirmed.100 

The DV “accordion”-like Phenomenon of wedged 
IVDs is actually a 3D model of inducing skeletal 
patho-remodeling in the spine by means of a vicious 
cycle occurring in apical and adjacent vertebrae in 
a IS curve, due to alteration of the mechanical en-
vironment and modulation of the endochondral 
growth of the immature vertebrae, according to 
Pauwels’, Wolff’s and Hueter-Volkmann principle 
laws (Fig 17, Fig 18).99

This original concept could be highly beneficial 
for tailoring treatment for children with IS. Current 
treatment methods to address the progression of IS 
include PSSEs, bracing, or a combination of both.102 

The greatest advantage for these children would 
be an unfused spine, as it was naturally designed. 
However, the high costs associated with tradition-
al surgical treatments could be avoided if non-op-
erative treatments are properly applied, based on 
prevention of the changes outlined in this con-
cept.5, 99, 103, 104

It is crucial to emphasize the point made by Dr. TK 
Taylor in 1981, while the effectiveness of early detec-
tion and surgical techniques cannot be denied, ortho-
pedic surgery must still be responsible for investigat-
ing the cause and pathogenesis of scoliotic curvature. 
Spinal fusion for scoliosis contradicts the core princi-
ple of orthopedic surgery— the preservation of mus-
culoskeletal function— a principle that Trueta strong-
ly upheld throughout his surgical career. Clearly, 
sacrificing spinal mobility should not be considered 
an acceptable final solution to the condition.105 

In conclusion this opinion article presents the 
recent knowledge on the initial skeletal patho-re-
modeling during scoliogenesis based on the current 

pertinent literature.
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